Algoritma Naïve Bayes, Decision Tree, dan SVM untuk Klasifikasi Persetujuan Pembiayaan Nasabah Koperasi Syariah

Naïve Bayes, Decision Tree, and SVM Algorithm for Classification of Sharia Cooperative Customer Financing Approval

Nurajijah Nurajijah -  Master of Computer Science, STMIK Nusa Mandiri Jakarta, Indonesia
*Dwiza Riana -  Master of Computer Science, STMIK Nusa Mandiri Jakarta, Indonesia
Received: 16 Jan 2019; Revised: 26 Apr 2019; Accepted: 29 Apr 2019; Published: 18 Jul 2019; Available online: 16 Jul 2019.
Open Access Copyright (c) 2019 Jurnal Teknologi dan Sistem Komputer
Citation Format:
Article Info
Section: Articles
Language: ID
Full Text:
Statistics: 53 60
Abstract
The decision on financing approval in sharia cooperatives has a high risk of the inability of customers to pay their credit obligations at maturity or referred to as bad credit. To maintain and minimize risk, an accurate method is needed to determine the financing agreement. The purpose of this study is to classify sharia cooperative loan history data using the Naïve Bayes algorithm, Decision Tree and SVM to predict the credibility of future customers. The results showed the accuracy of Naïve Bayes algorithm 77.29%, Decision Tree 89.02% and the highest Support Vector Machine (SVM) 89.86%.
Keywords
data mining; Naive Bayes; Decision Tree; SVM; credit financing

Article Metrics:

  1. R. A. Saraswati, “Peranan Analisis Laporan Keuangan, Penilaian Prinsip 5c Calon Debitur dan Pengawasan Kredit Terhadap Kreatifitas Pemberian Kredit,” Jurnal Nominal, vol. I, no. 1, pp. 1–13, 2012.
  2. N. Liu, E. J. Xia, and L. Yang, “Research and Application Of Pso-Bp Neural Networks in Credit Risk Assessment,” in 2010 International Symposium on Computational Intelligence and Design, Hangzhou, China, 2010, pp. 103-106.
  3. S. A. Subekti, L. Linawati, and A. Setiawan, “Penggunaan Metode Fuzzy Mamdani untuk Membuat Keputusan Dalam Analisis Kredit,” in Seminar Nasional Matematika dan Pendidikan Matematika, Yogyakarta, Indonesia, 2013, pp. 232-238.
  4. M. Sudhakar and C. V. K. Reddy, “Two Step Credit Risk Assessment Model for Retail Bank Loan Applications Using Decision Tree Data Mining Technique,” International Journal of Advanced Research in Computer Engineering & Technology, vol. 5, no. 3, pp. 705–718, 2016.
  5. H. Jiawei, M. Kamber, J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2012.
  6. S. Masripah, “Komparasi Algoritma Klasifikasi Data Mining untuk Evaluasi Pemberian Kredit,” Bina Insani ICT Journal, vol. 3, no. 1, pp. 187–193, 2016.
  7. J. Manurung, H. Mawengkang, and E. Zamzami, “Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment,” Journal of Physics: Conference Series, vol. 930, no. 1, 2017.
  8. T. T. Chasanah and M. A. Al Karomi, “Sistem Pendukung Keputusan Persetujuan Kredit dengan Pemanfaatan Information Gain untuk Pembobotan Atribut Klasifikasi K-Nearest Neighbour,” Jurnal Ilmiah ICTech, vol. 12, no. 2, pp. 14–19, 2017.
  9. M. Hasan, “Prediksi Tingkat Kelancaran Pembayaran Kredit Bank Menggunakan Algoritma Naive Bayes Berbasis Berbasis Forward Selection,” ILKOM Jurnal Ilmiah, vol. 9, no. 3, pp. 317–324, 2017.
  10. H. Yu, X. Huang, X. Hu, and H. Cai, “A Comparative Study on Data Mining Algorithms for Individual Credit Risk Evaluation,” in 2010 International Conference on Management of e-Commerce and e-Government, Chengdu, China, Oct. 2010, pp. 35–38.
  11. M. North, Data Mining for the Masses. Global Text, 2012.
  12. Nurajijah, D. Riana, “Dataset Pembiayaan”, Repository Nusamandiri, 30 April 2019, [Online]. Available:https://repository.nusamandiri.ac.id/index.php/repo/viewitem/18584