skip to main content

Paralel Spatial Pyramid Convolutional Neural Network untuk Verifikasi Kekerabatan berbasis Citra Wajah

Parallel Spatial Pyramid Convolutional Neural Network for Kinship Verification from Face Images

Department of Computer Engineering, Institut Teknologi Sepuluh Nopember, Indonesia

Received: 6 Aug 2018; Published: 31 Oct 2018.
Open Access Copyright (c) 2018 Jurnal Teknologi dan Sistem Komputer
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
In this paper, we proposed a parallel spatial pyramid CNN classifier for image-based kinship verification problem. Two face images that compared for kinship verification treated as input for each parallel convolutional network of our classifier. Each parallel convolutional network constructed using spatial pyramid CNN classifier. At the end of the convolutional network, we use three fully connected layers to combine each spatial pyramid CNN features and decided the final kinship prediction. We tested the proposed classifier using large-scale kinship verification dataset, called FIW dataset, consists of seven kinship problems from 1,000 families. In our approach, we treated each kinship problem as a binary classification problem with two output. We train our classifier separately for each kinship problem with same training configuration. Overall, our proposed method can achieve an average accuracy of more than 60% and outperform the baseline method.
Keywords: image-based kinship verification; parallel spatial pyramid CNN; deep spatial pyramid features
Funding: Department of Computer Engineering, Institut Teknologi Sepuluh Nopember

Article Metrics:

  1. J. P. Robinson, M. Shao, Y. Wu, and Y. Fu, “Families in the Wild (FIW): Large-Scale Kinship Image Database and Benchmarks,” In Proceedings
  2. of the 2016 ACM on Multimedia Conference, 2016. pp. 242–246
  3. S. Wang, J. P. Robinson, and Y. Fu, “Kinship Verification on Families in the Wild with Marginalized Denoising Metric Learning,” In 12th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), 2017. pp. 216–221
  4. S. Xia, M. Shao, and Y. Fu, “Kinship verification through transfer learning,” In International Joint Conference on Artificial Intelligent (IJCAI), 2011. pp. 2539–2544
  5. S. Xia, M. Shao, J. Luo, and Y. Fu, “Understanding Kin Relationships in a
  6. Photo,” IEEE Transactions on Multimedia, Vol. 14, No. 4, pp. 1046–1056, 2012
  7. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” In Proceedings of the IEEE conference on computer
  8. vision and pattern recognition (CVPR), 2016. pp. 770–778
  9. A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” In Advances in Neural
  10. Information Processing Systems (NIPS), 2012. pp. 1097–1105
  11. R. F. Rachmadi, Y. Komokata, K. Uchimura, and G. Koutaki, “Road sign classification system using cascade convolutional neural network,“ International Journal of Innovative Computing, Information, and Control (IJICIC), Vol. 13, No.1, pp. 95–109, 2017
  12. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single shot multibox detector,” In European conference on computer vision (ECCV), 2016. pp. 21–37
  13. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. pp. 779–788
  14. J. Redmon, and A. Farhadi, "YOLO9000: Better, Faster, Stronger," In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6517–6525
  15. Y. Qian and P. C. Woodland, “Very deep convolutional neural networks for robust speech recognition,” In Spoken Language Technology Workshop (SLT), 2016. pp. 481–488
  16. Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, C. Laurent, Y. Bengio, and A. Courville, “Towards End-to-End Speech Recognition with Deep Convolutional Neural Networks,” In Proceedings of Interspeech, 2016. pp. 410-414
  17. R. F. Rachmadi, K. Uchimura, and G. Koutaki, “Spatial Pyramid Convolutional Neural Network for Social Event Detection in Static Image. In 11th International Student Conference on Advanced Science and Technology (ICAST), 2016
  18. O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep Face Recognition,” In Proceedings of the British Machine Vision Conference (BMVC), 2015
  19. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for Fast
  20. Feature Embedding,” In Proceedings of the 22nd ACM International Conference on Multimedia (MM ’14), 2014. pp. 675–678
  21. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision (IJCV), Vol. 115, No. 3, pp. 211–252, 2015
  22. K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556, 2014

Last update:

  1. Maturity classification of cacao through spectrogram and convolutional neural network

    Gilbert E. Bueno, Kristine A. Valenzuela, Edwin R. Arboleda. Jurnal Teknologi dan Sistem Komputer, 8 (3), 2020. doi: 10.14710/jtsiskom.2020.13733
  2. A Multi-Task Comparator Framework for Kinship Verification

    Stefan Hormann, Martin Knoche, Gerhard Rigoll. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), 2020. doi: 10.1109/FG47880.2020.00106
  3. Image-based Kinship Verification using Fusion Convolutional Neural Network

    Reza Fuad Rachmadi, I Ketut Eddy Purnama, Supeno Mardi Susiki Nugroho, Yoyon Kusnendar Suprapto. 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA), 2019. doi: 10.1109/IWCIA47330.2019.8955092
  4. Face sketch recognition using principal component analysis for forensics application

    Endina Putri Purwandari, Aan Erlansari, Andang Wijanarko, Erich Adinal Adrian. Jurnal Teknologi dan Sistem Komputer, 8 (3), 2020. doi: 10.14710/jtsiskom.2020.13422
  5. Image-based Kinship Verification Using Dual VGG-Face Classifie

    Reza Fuad Rachmadi, I Ketut Eddy Purnama, Supeno Mardi Susiki Nugroho, Yoyon Kusnendar Suprapto. 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), 2021. doi: 10.1109/IoTaIS50849.2021.9359720
  6. Dual Convolutional Neural Network Classifier with Pyramid Attention Network for Image-Based Kinship Verification

    Reza Fuad Rachmadi, I Ketut Eddy Purnama, Supeno Mardi Susiki Nugroho, Yoyon Kusnendar Suprapto. Acta Cybernetica, 26 (2), 2023. doi: 10.14232/actacyb.296355
  7. Network Architecture Search Method on Hyperparameter Optimization of Convolutional Neural Network: Review

    Hudalizaman, Igi Ardiyanto, Sunu Wibirama. 2020 6th International Conference on Science and Technology (ICST), 2020. doi: 10.1109/ICST50505.2020.9732800

Last update: 2024-12-19 20:42:56

  1. The transfer learning with convolutional neural network method of side-scan sonar to identify wreck images

    Tang Y.. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 50 (2), 2021. doi: 10.11947/j.AGCS.2021.20200187
  2. A Multi-Task Comparator Framework for Kinship Verification

    Stefan Hormann, Martin Knoche, Gerhard Rigoll. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), 2020. doi: 10.1109/FG47880.2020.00106
  3. Image-based Kinship Verification using Fusion Convolutional Neural Network

    Reza Fuad Rachmadi, I Ketut Eddy Purnama, Supeno Mardi Susiki Nugroho, Yoyon Kusnendar Suprapto. 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA), 2019. doi: 10.1109/IWCIA47330.2019.8955092
  4. Image-based Kinship Verification Using Dual VGG-Face Classifie

    Reza Fuad Rachmadi, I Ketut Eddy Purnama, Supeno Mardi Susiki Nugroho, Yoyon Kusnendar Suprapto. 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), 2021. doi: 10.1109/IoTaIS50849.2021.9359720