skip to main content

Sistem Pendukung Keputusan untuk Subsidi Biaya Perbaikan Kerusakan Kontainer Menggunakan Naive Bayes

Decision Support System for Subsidizing the Repair Cost of Containers Damage Using Naive Bayes

Department of Informatics, Indo Global Mandiri University, Indonesia

Received: 13 Dec 2018; Revised: 17 Feb 2019; Accepted: 26 Jul 2019; Available online: 4 Aug 2019; Published: 31 Jul 2019.
Open Access Copyright (c) 2019 Jurnal Teknologi dan Sistem Komputer
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
During the process of using containers by the importer, the shipping company as the owner of the container is often faced with the problem of those who must be responsible for handling containers that are damaged when shipping goods. This study examines the application of the Naïve Bayes method to help the container owner to make a decision in analyzing each case of objection from the importer. The analysis was carried out for each objection case submitted by the importer regarding subsidizing the cost of repairs to be given a FREE or PAID decision by considering 4 factors, which are the damaging side, the damage, the type of damage, and the cost of repairs. From 48 datasets collected and analyzed, the decision has an accuracy rate of 63.3% in subsidizing of container repair costs.
Keywords: container damage; costing DCS; naive Bayes; shipping company
Funding: Indo Global Mandiri University

Article Metrics:

  1. H. Gunawan, S. Suhartono, and M. E. Sianto, “Analisis Faktor-Faktor Yang Berpengaruh Terhadap Produktivitas Bongkar Muat Kontainer Di Dermaga Berlian Surabaya (Studi Kasus PT. Pelayaran Meratus),” Widya Teknik, vol. 7, no. 1, pp. 79–89, 2008
  2. H. M. N. I. Ronosentono, Pengetahuan Dasar Tatalaksana Freight Forwarding, 2nd ed. Jakarta: infomedika, 2006
  3. T. Purwinarti, “Prosedur Pengurusan Dokumen Barang Masuk Gudang Ekspor, Prosedur Pengangkutan Barang Ekspor dan Prosedur Penanganan Dokumen Import,” Jurnal Ekonomi dan Bisnis, vol. 11, no. 1, pp. 1-8, 2012
  4. N. H. Ahmad and E. A. Firmansyah, “Suatu Tinjauan atas Prosedur Penerimaan Barang Impor dari Pelabuhan Muat dengan Status Peti Kemas Full Container Load (FCL),” Jurnal Imliah Manajemen Bisnis dan Inovasi Universitas Sam Ratulangi, vol. 5, no. 1, pp. 38-48, 2018
  5. S. M. C. Putri, “Proses Penanganan Barang Impor Pada Saat Bencana Alam Melalui Jasa Freight Forwarder MSA Kargo Surakarta,” B. thesis, Universitas Sebelas Maret, Surakarta, Indonesia, 2014. [online]
  6. D. L. Fithri, “Model Data Mining Dalam Penentuan Kelayakan Pemilihan Tempat Tinggal Menggunakan Metode Naive Bayes,” Jurnal Simetris, vol. 7, no. 2, pp. 725–730, 2016
  7. M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” Jurnal EECCIS, vol. 7, no. 1, pp. 59–64, 2013
  8. M. U. Nuhayati, D. Dedih, and J. Mulyana, “Sistem Pendukung Keputusan untuk Menentukan Lokasi Usaha Kuliner yang Strategis Menggunakan Metode Naive Bayes,” Jurnal Interkom, vol. 12, no. 1, pp. 4-12, 2017
  9. A. Yusnita and R. Handini, “Sistem Pendukung Keputusan Menentukan Lokasi Rumah Makan yang Strategis Menggunakan Metode Naive Bayes,” Semantik, vol. 2, no. 1, pp. 290-294 , 2012
  10. N. L . G. P. Suwirmayanti, “Penerapan Metode Naive Bayes untuk Menganalisa Kerusakan Otomatic Transmission pada Mobil,” Jurnal Sistem dan Informatika, vol. 10, no. 1, pp. , 2015
  11. S. R. Nasution, D. Andreswari, and T. Wahyu, “Implementasi Naive Bayes Classsifier and Simple Additive Weighting (SAW) untuk Pemilihan Menu Diet Penyakit Diabetes Mellitus,” Rekursif: Jurnal Informatika, vol. 7, no. 1, pp. 1-9, 2019
  12. A. Raharja, “Analisa Strategi Corporate pada Industri Jasa Freight Forwarding dengan Menggunakan Metode MCDM-AHP di PT. DMK Cargo,” M. Thesis, Institut Teknologi Sepuluh November, Surabaya, Indonesia, 2017. [online]
  13. G. A. Manu, Y. H. Putra, and Y. Afrizal, “Sistem Pendukung Keputusan untuk Menentukan Pilihan Jurusan Mahasiswa Dengan Menggunakan Metode Naïve Bayes dan Model Analytical Hierarchy Process (AHP),” Jurnal Tata Kelola dan Kerangka Kerja Teknologi Informasi, vol. 1, no. 2, pp. 88–95, 2015
  14. A. Panoto, Y. R. W. Utami, and W. L. Y. Saptomo, “Penerapan Algoritma K-Nearest Neighbors untuk Prediksi Kelulusan Mahasiswa pada STMIK Sinar Nusantara Surakarta,” Jurnal TIKomSiN, vol. 5, no. 1, pp. 27–31, 2017

Last update:

No citation recorded.

Last update: 2024-12-20 19:46:56

  1. Determining employee eligibility in equalizing staffing status using the naïve bayes

    Gustriansyah R.. International Journal of Engineering and Advanced Technology, 9 (1), 2019. doi: 10.35940/ijeat.A2627.109119