Pengaruh Masukan Kendali Terhadap Hasil Identifikasi Parameter Pesawat Udara Konfigurasi Konvensional Matra Terbang Longitudinal

Effect of Control Input on the Results of Parameter Identification of Aircraft Conventional Configuration of Longitudinal Flying Dimension

*Eries Bagita Jayanti -  Lembaga Penerbangan dan Antariksa Nasional, Indonesia
Novita Atmasari -  Lembaga Penerbangan dan Antariksa Nasional, Indonesia
Hidayati Mardikasari -  Lembaga Penerbangan dan Antariksa Nasional, Indonesia
Ardian Rizaldi -  Lembaga Penerbangan dan Antariksa Nasional, Indonesia
Fuad Surastyo Pranoto -  Lembaga Penerbangan dan Antariksa Nasional, Indonesia
Singgih Satrio Wibowo -  Department of Mechanical Engineering, Politeknik Negeri Bandung, Indonesia
Received: 4 Dec 2018; Revised: 29 Jan 2019; Accepted: 30 Jan 2019; Published: 31 Jan 2019; Available online: 31 Mar 2019.
Open Access Copyright (c) 2019 Jurnal Teknologi dan Sistem Komputer
Citation Format:
Article Info
Section: Articles
Language: ID
Full Text:
Statistics: 103 58
Parameter identification is a process to get real characteristics of the motion dynamics of an object which can then be used to build the dynamics model of the object, which has a very high level of validity and accuracy. The modeling process is usually carried out using aircraft input data and the results of existing navigation data recording. From the data, the model parameters are estimated using the simple least square method. In this study, the simulation was carried out by varying the deflection input in the control field and simulation time. The input given to the longitudinal dimension is the deflection of the elevator control field. The results of parameter identification in the Corsair A-7A plane in the longitudinal dimension indicate that the input form 3-2-1 has a smaller error value than using doublet and pulse inputs. This shows that the input form 3-2-1 is most suitable for the longitudinal dimension among the given inputs.
aircraft modelling; parameter identification; input variations; longitudinal dimension

Article Metrics:

  1. V. Klein and E. A. Morelli, Aircraft System Identification, Theory and Practice. Reston, VA: AIAA, 2006.
  2. M. B. Tischler and R. K. Temple, Aircraft and Rotorcraft System Identification, Engineering Methods with Flight-Test Examples. Reston, VA: AIAA, 2006.
  3. G. J. Mullen, Aircraft Parameter Identification using Matlab. Cranfield University, Cranfield, 2000.
  4. S. S. Wibowo, "Pengembangan Software Uji Terbang Virtual Menggunakan X-Plane, Identifikasi Parameter Menggunakan MATLAB," in Prosiding InSINas 2012, Bandung, 2012, pp. HK154-HK158.
  5. L. Saraswathi, "Estimation of Stability & Control Derivatives from Flight Test Data of Fighter Aircraft," Defence Science Journal, vol. 50, no. 2, pp. 123-136, 2013.
  6. A. Majid, R. Sumiharto, and S. B. Wibisono, "Identifikasi Sistem Pesawat Udara Tanpa Awak Sayap Tetap Jenis Bixler," IJEIS (Indonesian Journal of Electronics and Instrumentations Systems), vol. 5, no. 1, pp. 43-54, Apr. 2015.
  7. N. K. Gupta, Input Design for Identification of Aircraft Stability and Control Derivatives. NASA, 1975.
  8. A. S. Khan, "Estimation of Stability and Control Derivatives from Flight Data of Kiran Aircraft Using Feed Forward Neural Networks," Thesis, Indian Institute of Technology Kanpur, Kanpur, India, 2000.
  9. M. V. Cook, Flight Dynamics Principles, 2nd ed. Oxford: Butterworth-Heinemann, 2007.
  10. G. L. Teper, Aircraft Stability And Control Data. NASA, Hawthorne, California, 1969.