skip to main content

Rice Disease Image Classification using MobileNetV2 Pretrained Model with AcivationAttention Visualization using Gradient-weighted Class Activation Mapping (Grad-CAM)

1Department of Computer Science, Faculty of Mathematics and Natural Sciences, Pakuan University, Indonesia, Universitas Pakuan, Indonesia

2Jl. Pakuan RT. 02 RW. 06 Tegallega Kecamatan Bogor Tengah Kota Bogor 16129, Indonesia

Received: 13 Jul 2022; Published: 24 Sep 2024.
Open Access Copyright (c) 2024 Fahmi Noor Fiqri, Sri Setyaningsih, Asep Saepulrohman
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Rice diseases is one of the recurring factors of failed harvest and reduced rice production output and it is one of the biggest problems for Indonesia especially because of Indonesia’s population dependent of rice as it’s staple food. Pest control using fast dan early detection is one of the solutions to reduce the potential of failed harvest. Using a pretrained model of MobileNetV2, a model has been successfully built to detect for different types of rice diseases using convolutional neural network architecture and transfer learning method. The modelling process uses 7.077 image sample of rice infected by bacterial blight, blast, brown spot, and tungro. The model then can be accessed through website and has 99% of classification accuracy. Furthermore, using Gradient-Weighted Class Activation Mapping (Grad-CAM) rice disease can then be marked on top of the original image as a heat map, providing the users easier way to localize dan verify the classification result faster. 

Fulltext Email colleagues
Keywords: disease; rice; transfer learning; convolutional neural network; grad-cam

Article Metrics:

  1. FAO, ‘Crops and livestock products’, Food and Agriculture Organization of the United Nations, Dec. 03, 2022. https://www.fao.org/faostat/en/#data/QCL/visualize (accessed Mar. 12, 2022)
  2. BPS, ‘Analisis Produktivitas Padi di Indonesia 2020 (Hasil Survei Ubinan)’, Badan Pusat Statis-tik, 5203028, Dec. 2021
  3. Y. LeCun, Y. Bengio, and G. Hinton, ‘Deep learn-ing’, Nature, vol. 521, no. 7553, Art. no. 7553, May 2015, doi: 10.1038/nature14539
  4. F. Zhuang et al., ‘A Comprehensive Survey on Transfer Learning’, ArXiv191102685 Cs Stat, Jun. 2020, Accessed: Mar. 18, 2022. [Online]. Availa-ble: http://arxiv.org/abs/1911.02685
  5. R. Ribani and M. Marengoni, ‘A Survey of Trans-fer Learning for Convolutional Neural Networks’, in 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), Oct. 2019, pp. 47–57. doi: 10.1109/SIBGRAPI-T.2019.00010
  6. P. Kulkarni, A. Karwande, T. Kolhe, S. Kamble, A. Joshi, and M. Wyawahare, ‘Plant Disease Detec-tion Using Image Processing and Machine Learn-ing’, ArXiv210610698 Cs, Nov. 2021, Accessed: Mar. 13, 2022. [Online]. Available: http://arxiv.org/abs/2106.10698
  7. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedan-tam, D. Parikh, and D. Batra, ‘Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization’, Int. J. Comput. Vis., vol. 128, no. 2, pp. 336–359, Feb. 2020, doi: 10.1007/s11263-019-01228-7
  8. DSPA, ‘What is CRISP DM?’, Data Science Pro-cess Alliance, 2022. https://www.datascience-pm.com/crisp-dm-2/ (accessed Mar. 18, 2022)
  9. K. Sethy, ‘Rice Leaf Disease Image Samples’, vol. 1, Jul. 2020, doi: 10.17632/fwcj7stb8r.1
  10. R. Draelos, ‘Best Use of Train/Val/Test Splits, with Tips for Medical Data’, Glass Box, Sep. 15, 2019. https://glassboxmedicine.com/2019/09/15/best-use-of-train-val-test-splits-with-tips-for-medical-data/ (accessed Jul. 02, 2022)
  11. B. S. Bari et al., ‘A real-time approach of diagnos-ing rice leaf disease using deep learning-based faster R-CNN framework’, PeerJ Comput. Sci., vol. 7, p. e432, Apr. 2021, doi: 10.7717/peerj-cs.432
  12. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘ImageNet: A large-scale hierarchical image database’, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848
  13. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, ‘MobileNetV2: Inverted Residuals and Linear Bottlenecks’. arXiv, Mar. 21, 2019. doi: 10.48550/arXiv.1801.04381
  14. G. Herlambang, ‘KLASIFIKASI PRODUK FASH-ION PADA E – COMMERCE MENGGUNAKAN METODE DEEP LEARNING’, Skripsi, Universi-tas Pakuan, Bogor, 2020
  15. S. R. D. Amiril, ‘Implementasi Algoritma Convo-lutional Neural Network pada Klasifikasi Penyakit Padi Melalui Citra Daun’, Universitas Islam Indo-nesia, Yogyakarta, Skripsi, 2020
  16. P. K. Sethy, N. K. Barpanda, A. K. Rath, and S. K. Behera, ‘Deep feature based rice leaf disease identification using support vector machine’, Com-put. Electron. Agric., vol. 175, p. 105527, Aug. 2020, doi: 10.1016/j.compag.2020.105527
  17. M. Abadi et al., ‘TensorFlow: Large-Scale Ma-chine Learning on Heterogeneous Distributed Sys-tems’, Mar. 2016, doi: 10.48550/arXiv.1603.04467
  18. M. Khoiruddin, A. Junaidi, and W. A. Saputra, ‘Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network’, J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 2, no. 1, Art. no. 1, Feb. 2022, doi: 10.20895/dinda.v2i1.341
  19. R. N. Whidhiasih and I. Ekawati, ‘Identifikasi Jenis Penyakit Daun Padi Menggunakan Adaptif Neuro Fuzzy Inferene System (ANFIS) Berdasarkan Tekstur’, Pros. Semin. Nas. ENERGI Teknol. SINERGI, pp. 131–140, Jul. 2019
  20. J. Kusanti and N. A. Haris, ‘Klasifikasi Penyakit Daun Padi Berdasarkan Hasil Ekstraksi Fitur GLCM Interval 4 Sudut’, J. Inform. J. Pengemb. IT, vol. 3, no. 1, Art. no. 1, Jan. 2018, doi: 10.30591/jpit.v3i1.669

Last update:

No citation recorded.

Last update: 2024-09-26 21:01:56

No citation recorded.