skip to main content

Segmentasi Objek Citra Ultrasonografi Terotomatisasi Menggunakan Metode Aktif Kontur Kombinatorial

Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang, Gedung E11 Jurusan Teknik Elektro FT UNNES, Kampus Sekaran Gunungpati, Kota Semarang, Indonesia 50229, Indonesia

Received: 6 Dec 2022; Published: 24 Sep 2024.
Open Access Copyright (c) 2024 Anan Nugroho, Budi Sunarko, Hari Wibawanto, Anggraini Mulwinda, Anas Fauzi, Dwi Oktaviyanti, Dina Wulung Savitri
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Active Contour (AC) merupakan algoritme yang banyak digunakan dalam melakukan segmentasi dalam mengembangkan sistem Computer Aided Diagnosis (CAD) pada pencitraan USG. Namun metode yang berkembang masih bersifat interaktif yang menyebabkan human error serta adanya berbagai masalah akibat inhomogenitas pada citra Ultrasonografi (USG) seperti leakage, terjadinya false area serta local minima. Pada studi ini dikembangkan metode segmentasi objek otomatis pada citra USG untuk membantu radiolog dalam proses diagnosis yang efisien. Metode yang dikembangkan disebut Automatic Combinatorial Active Contour (ACAC) yang mengkombinasikan turunan simplifikasi model global region-based CV (Chan-Vese) dan improved-GAC (Geodesic Active Contour) untuk segmentasi lokal. Hasil studi dengan 50 dataset yang diuji coba yaitu didapatkannya nilai accuracy sebesar 98.83%, precission 95.26%, sensitivity 86.58%, specificity 99.63%, similarity 90.58%, dan IoU 82.87%. performa kuantitatif ini membuktikan bahwa metode ACAC layak diimplementasikan pada sistem CAD yang lebih efisien dan akurat.
Fulltext Email colleagues
Keywords: Aktif kontur; otomatis; kombinatorial; CAD; segmentasi; USG

Article Metrics:

  1. M. A. Dwijaya, U. A. Ahmad, dan ..., “Perancangan Model Pengenalan Citra Digital Tomografi Paru-Paru Untuk Deteksi Covid-19 Menggunakan Jaringan Saraf Tiruan,” eProceedings …, vol. 8, no. 6, hal. 12080–12092, 2021, [Daring]. Tersedia pada: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/17039
  2. A. Elangovan dan T. Jeyaseelan, “Medical imaging modalities: A survey,” 1st Int. Conf. Emerg. Trends Eng. Technol. Sci. ICETETS 2016 - Proc., hal. 2–5, 2016, doi: 10.1109/ICETETS.2016.7603066
  3. J. A. Noble dan D. Boukerroui, “Ultrasound image segmentation: A survey,” IEEE Trans. Med. Imaging, vol. 25, no. 8, hal. 987–1010, 2006, doi: 10.1109/TMI.2006.877092
  4. P. P. A. Smyth, “The thyroid and breast cancer: A significant association?,” Ann. Med., vol. 29, no. 3, hal. 189–191, 1997, doi: 10.3109/07853899708999335
  5. P. J. Hardefeldt, G. D. Eslick, dan S. Edirimanne, “Benign thyroid disease is associated with breast cancer: A meta-analysis,” Breast Cancer Res. Treat., vol. 133, no. 3, hal. 1169–1177, 2012, doi: 10.1007/s10549-012-2019-3
  6. A. Angelousi et al., “Is there an association between thyroid function abnormalities and breast cancer?,” Arch. Endocrinol. Metab., vol. 61, no. 1, hal. 54–61, 2017, doi: 10.1590/2359-3997000000191
  7. A. Rodríguez-Cristerna, W. Gómez-Flores, dan W. C. de Albuquerque Pereira, “A computer-aided diagnosis system for breast ultrasound based on weighted BI-RADS classes,” Comput. Methods Programs Biomed., vol. 153, hal. 33–40, 2017, doi: 10.1016/j.cmpb.2017.10.004
  8. T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out. Elsevier, 2014. doi: 10.1016/C2011-0-07261-7
  9. R. Takahashi dan Y. Kajikawa, “Computer-aided diagnosis: A survey with bibliometric analysis,” Int. J. Med. Inform., vol. 101, hal. 58–67, 2017, doi: 10.1016/j.ijmedinf.2017.02.004
  10. K. Drukker, C. A. Sennett, dan M. L. Giger, “Automated method for improving system performance of computer-aided diagnosis in breast ultrasound,” IEEE Trans. Med. Imaging, vol. 28, no. 1, hal. 122–128, 2009, doi: 10.1109/TMI.2008.928178
  11. K. Doi, “Computer-aided diagnosis in medical imaging: Historical review, current status and future potential,” Comput. Med. Imaging Graph., vol. 31, no. 4–5, hal. 198–211, 2007, doi: 10.1016/j.compmedimag.2007.02.002
  12. C. Kaushal, S. Bhat, D. Koundal, dan A. Singla, “Recent Trends in Computer Assisted Diagnosis (CAD) System for Breast Cancer Diagnosis Using Histopathological Images,” Irbm, vol. 40, no. 4, hal. 211–227, 2019, doi: 10.1016/j.irbm.2019.06.001
  13. B. Bhanu dan S. Lee, Genetic Learning for Adaptive Image Segmentation. Springer US, 1994. [Daring]. Tersedia pada: https://books.google.co.id/books?id=2%5C_R9u%5C_xOZu4C
  14. Zulfanahri, H. A. Nugroho, A. Nugroho, E. L. Frannita, dan I. Ardiyanto, “Classification of thyroid ultrasound images based on shape features analysis,” BMEiCON 2017 - 10th Biomed. Eng. Int. Conf., vol. 2017-Janua, hal. 1–5, 2017, doi: 10.1109/BMEiCON.2017.8229106
  15. D. A. Spak, J. S. Plaxco, L. Santiago, M. J. Dryden, dan B. E. Dogan, “BI-RADS® fifth edition: A summary of changes,” Diagn. Interv. Imaging, vol. 98, no. 3, hal. 179–190, 2017, doi: 10.1016/j.diii.2017.01.001
  16. J. H. Yoon, H. S. Lee, E. K. Kim, H. J. Moon, dan J. Y. Kwak, “Malignancy risk stratification of thyroid nodules: Comparison between the thyroid Imaging Reporting and Data System and the 2014 American Thyroid Association management guidelines,” Radiology, vol. 278, no. 3, hal. 917–924, 2016, doi: 10.1148/radiol.2015150056
  17. A. Nugroho, R. Hidayat, dan H. A. Nugroho, “Artifact removal in radiological ultrasound images using selective and adaptive median filter,” ACM Int. Conf. Proceeding Ser., hal. 237–241, 2019, doi: 10.1145/3309074.3309119
  18. A. Nugroho, R. Hidayat, H. A. Nugroho, dan J. Debayle, “Combinatorial active contour bilateral filter for ultrasound image segmentation,” J. Med. Imaging, vol. 7, no. 05, hal. 1–13, 2020, doi: 10.1117/1.jmi.7.5.057003
  19. S. Wu, Q. Zhu, dan Y. Xie, “Evaluation of various speckle reduction filters on medical ultrasound images,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, hal. 1148–1151, 2013, doi: 10.1109/EMBC.2013.6609709
  20. N. S. Narayan, P. Marziliano, dan C. G. L. Hobbs, “Automatic removal of manually induced artefacts in ultrasound images of thyroid gland,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, hal. 3399–3402, 2013, doi: 10.1109/EMBC.2013.6610271
  21. X. Wang, S. Li, J. Li, J. Wang, dan M. Zhang, “A novel segmentation model with dual level set function based on Chan-vese and local binary fitting models,” 2016 3rd Int. Conf. Syst. Informatics, ICSAI 2016, no. Icsai, hal. 837–842, 2016, doi: 10.1109/ICSAI.2016.7811067
  22. D. Koundal, S. Gupta, dan S. Singh, “Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set,” Appl. Soft Comput., vol. 40, hal. 86–97, Mar 2016, doi: 10.1016/J.ASOC.2015.11.035
  23. H. D. Cheng, J. Shan, W. Ju, Y. Guo, dan L. Zhang, “Automated breast cancer detection and classification using ultrasound images: A survey,” Pattern Recognit., vol. 43, no. 1, hal. 299–317, Jan 2010, doi: 10.1016/J.PATCOG.2009.05.012
  24. S. Sridevi dan M. Sundaresan, “Survey of image segmentation algorithms on ultrasound medical images,” Proc. 2013 Int. Conf. Pattern Recognition, Informatics Mob. Eng. PRIME 2013, hal. 215–220, 2013, doi: 10.1109/ICPRIME.2013.6496475
  25. M. Xian, Y. Zhang, H. D. Cheng, F. Xu, B. Zhang, dan J. Ding, “Automatic breast ultrasound image segmentation: A survey,” Comput. Vis. Pattern Recognit., hal. 10–71, Jul 2017, doi: 10.1016/J.PATCOG.2018.02.012
  26. Q. Huang, Y. Luo, dan Q. Zhang, “Breast ultrasound image segmentation: a survey,” Int. J. Comput. Assist. Radiol. Surg., vol. 12, no. 3, hal. 493–507, 2017, doi: 10.1007/s11548-016-1513-1
  27. K. M. Meiburger, U. R. Acharya, dan F. Molinari, “Automated localization and segmentation techniques for B-mode ultrasound images: A review,” Comput. Biol. Med., vol. 92, hal. 210–235, 2018, doi: 10.1016/j.compbiomed.2017.11.018
  28. A. Nugroho, R. Hidayat, dan H. A. Nugroho, “Thyroid ultrasound image segmentation: A review,” Proc. - 2019 5th Int. Conf. Sci. Technol. ICST 2019, 2019, doi: 10.1109/ICST47872.2019.9166443
  29. Y. Hu et al., “Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model,” Med. Phys., vol. 46, no. 1, hal. 215–228, 2019, doi: 10.1002/mp.13268
  30. A. Nugroho, R. Hidayat, H. A. Nugroho, dan J. Debayle, “Ultrasound object detection using morphological region-based active contour: An application system,” Int. J. Innov. Learn., vol. 29, no. 4, hal. 412–430, 2021, doi: 10.1504/IJIL.2021.115497
  31. A. Nugroho, H. A. Nugroho, dan L. Choridah, “Active Contour Bilateral Filtering for Breast Lesions Segmentation on Ultrasound Images,” hal. 36–40, 2015
  32. D. Koundal, B. Sharma, dan Y. Guo, “Intuitionistic based segmentation of thyroid nodules in ultrasound images,” Comput. Biol. Med., vol. 121, hal. 103776, 2020, doi: 10.1016/j.compbiomed.2020.103776
  33. J. jing Zong, T. shuang Qiu, W. dong Li, dan D. mei Guo, “Automatic ultrasound image segmentation based on local entropy and active contour model,” Comput. Math. with Appl., vol. 78, no. 3, hal. 929–943, 2019, doi: 10.1016/j.camwa.2019.03.022
  34. A. Rodtook, K. Kirimasthong, W. Lohitvisate, dan S. S. Makhanov, “Automatic initialization of active contours and level set method in ultrasound images of breast abnormalities,” Pattern Recognit., vol. 79, hal. 172–182, 2018, doi: 10.1016/j.patcog.2018.01.032
  35. F. A. Hermawati, H. Tjandrasa, Sugiono, G. I. P. Sari, dan A. Azis, “Automatic femur length measurement for fetal ultrasound image using localizing region-based active contour method,” J. Phys. Conf. Ser., vol. 1230, no. 1, hal. 012002, 2019, doi: 10.1088/1742-6596/1230/1/012002
  36. T. F. Chan dan L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process., vol. 10, no. 2, hal. 266–277, 2001, doi: 10.1109/83.902291
  37. A. Nugroho, R. Hidayat, H. A. Nugroho, dan J. Debayle, “Development of Active Contour Model For Radiological Ultrasound Image Segmentation,” Universitas Gadjah Mada, 2021. [Daring]. Tersedia pada: http://etd.repository.ugm.ac.id/penelitian/detail/204336
  38. V. Caselles, R. Kimmel, dan G. Sapiro, “Geodesic Active Contours,” Int. J. Comput. Vis., vol. 22, no. 1, hal. 61–79, 1997, doi: 10.1023/A:1007979827043
  39. Z. Wang, K. Wang, F. Yang, S. Pan, dan Y. Han, “Image segmentation of overlapping leaves based on Chan–Vese model and Sobel operator,” Inf. Process. Agric., vol. 5, no. 1, hal. 1–10, 2018, doi: 10.1016/j.inpa.2017.09.005
  40. A. Nugroho, R. Hidayat, H. Adi Nugroho, dan J. Debayle, “Cancerous object detection using morphological region-based active contour in ultrasound images,” J. Phys. Conf. Ser., vol. 1444, no. 1, hal. 12011, Jan 2020, doi: 10.1088/1742-6596/1444/1/012011
  41. S. Ruuska, W. Hämäläinen, S. Kajava, M. Mughal, P. Matilainen, dan J. Mononen, “Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle,” Behav. Processes, vol. 148, hal. 56–62, 2018

Last update:

No citation recorded.

Last update: 2024-11-20 09:40:16

No citation recorded.