skip to main content

Algoritma Genetika untuk Optimasi Komposisi Makanan Bagi Penderita Hipertensi

Genetic Algorithm for Optimizing Food Composition for Hypertension Patients

Faculty of Computer Science, Universitas Brawijaya, Indonesia

Received: 27 Oct 2018; Revised: 13 Jan 2019; Accepted: 30 Jan 2019; Available online: 31 Mar 2019; Published: 31 Jan 2019.
Open Access Copyright (c) 2019 Jurnal Teknologi dan Sistem Komputer
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Hypertension can be prevented and handled by eating nutritious foods with the right composition. The genetic algorithm can be used to optimize the food composition for people with hypertension. Data used include sex, age, weight, height, activity type, stress level, and patient hypertension level. This study uses a reproduction method that is good enough to be applied to integer chromosome representations so that the search results provided are not local optimum solutions. The testing results show that the best genetic algorithm parameters are as follows population size is 15 with average fitness 20.97, the generation number is 40 with average fitness 50.10, and combination crossover rate and mutation rate are 0.3 and 0.7 with average fitness 41.67. The solution obtained is the optimal food composition for people with hypertension.
Keywords: genetic algorithm; hypertension; food composition; stroke; high blood pressure
Funding: Faculty of Computer Science, Universitas Brawijaya

Article Metrics:

  1. H. Nguyen, O. A. Odelola, J. Rangaswami, and A. Amanullah, “A Review of Nutritional Factors in Hypertension Management,” International Journal of Hypertension, vol. 2013, pp. 1-12, 2013
  2. M. Ardiansyah, Medikal Bedah untuk Mahasiswa. Yogyakarta: Diva Press, 2012
  3. M. Puspitorini, Hipertensi Cara Mudah Mengatasi Tekanan Darah Tinggi. Yogyakarta: Image Press, 2009
  4. H. Okubo, S. Sasaki, K. Murakami, T. Yokoyama, N. Hirota, A. Notsu, M. Fukui, and C. Date, “Designing Optimal Food Intake Patterns to Achieve Nutritional Goals for Japanese Adults through the use of Linear Programming Optimization Models,” Nutrition Journal, vol. 14, no. 57, pp. 1-10, 2015
  5. A. C. Iwuji, M. Nnanna, and N. I. C. Ndulue, “An Optimal DASH Diet Model for People with Hypertension Using Linear Programming Approach,” Open Journal of Optimization, vol. 5, no. 1, pp. 14-21, 2016
  6. F. Zhang and W. B. Roush, “Multiple-objective (Goal) Programming Model for Feed Formulation: An Example For Reducing Nutrient Variation,” Poultry Science, vol. 81, no. 2, pp. 182-192, 2002
  7. M. A. Wolters, “A Greedy Algorithm for Unimodal Kernel Density Estimation by Data Sharpening,” Journal of Statistical Software, vol. 47, no. 6, pp. 1-23, 2012
  8. V. N. Wijayaningrum and F. Utaminingrum, “Numerical Methods for Initialization in Fodder Composition Optimization,” in 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Malang, Indonesia, Oct. 2016, pp. 397-400
  9. V. N. Wijayaningrum, W. F. Mahmudy, and M. H. Natsir, “Optimization of Poultry Feed Composition Using Hybrid Adaptive Genetic Algorithm and Simulated Annealing,” Journal of Telecommunication, Electronic, and Computer Engineering, vol. 9, no. 2–8, pp. 183-187, 2017
  10. F. Ramadhani, F. A. Fathurrachman, R. Fitriawanti, A. C. Rongre, and V. N. Wijayaningrum, “Optimasi Pendistribusian Barang Farmasi Menggunakan Algoritma Genetika,” Kumpulan Jurnal Ilmu Komputer (KLIK), vol. 5, no. 2, pp. 159-168, 2018
  11. A. Kartikasari, D. E. Ratnawati, and T. S. Kusuma, “Optimasi Komposisi Makanan untuk Penderita Hipertensi Menggunakan Algoritma Genetika dan Simulated Annealing,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 11, pp. 1236-1243, 2017
  12. A. J. Umbarkar and P. D. Sheth, “Crossover Operators in Genetic Algorithms: A Review,” ICTACT Journal on Soft Computing, vol. 6, no. 1, pp. 1083-1092, 2015
  13. A. Hussain, Y. S. Muhammad, M. N. Sajid, I. Hussain, A. M. Shoukry, and S. Gani, “Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator,” Computational Intelligence and Neuroscience, vol. 2017, no. 1, pp. 1-7, 2017
  14. B. Sutomo, Menu Sehat Penakluk Hipertensi. Jakarta: DeMedia Pustaka, 2009
  15. W. Welis and M. S. Rifki, Gizi untuk Aktifitas Fisik dan Kebugaran. Padang: Sukabina Press, 2013
  16. Cornelia, E. Sumedi, I. Anwar, R. Ramayulis, S. Iwaningsih, T. Kresnawan, and H. Nurlita, Konseling Gizi. Jakarta: Penebar Plus+, 2013
  17. N. Devi, Nutrition and Food: Gizi untuk Keluarga. Jakarta: Kompas, 2010
  18. M. Mehra, M. L. Jayalal, A. J. Arul, S. Rajeswari, K. K. Kuriakose, and S. A. V. S. Murty, “Study on Different Crossover Mechanisms of Genetic Algorithm for Test Interval Optimization for Nuclear Power Plants,” International Journal of Intelligent Systems and Applications, vol. 6, no. 1, pp. 20-28, 2014
  19. M. Shafaat, I. Cholissodin, and E. Santoso, “Optimasi Komposisi Makanan Diet bagi Penderita Hipertensi menggunakan Algoritme Genetika,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 1, pp. 226-236, 2018

Last update:

  1. Optimization of Crops Allocation Planning in Cianjur Involving Water Cost Constraints Using Genetic Algorithm

    Irma Palupi, Bambang Ari Wahyudi, Siti Sa'Adah. 2021 9th International Conference on Information and Communication Technology (ICoICT), 2021. doi: 10.1109/ICoICT52021.2021.9527509
  2. Optimization of Foodstuffs for Patients with Hypertension Using the Improved Particle Swarm Optimization Method

    Novrido Charibaldi, Nur Heri Cahyana, Muhamad Setiawan Wicaksono. International Journal of Artificial Intelligence & Robotics (IJAIR), 4 (1), 2022. doi: 10.25139/ijair.v4i1.4335

Last update: 2025-01-24 13:12:15

  1. Optimization of Crops Allocation Planning in Cianjur Involving Water Cost Constraints Using Genetic Algorithm

    Irma Palupi, Bambang Ari Wahyudi, Siti Sa'Adah. 2021 9th International Conference on Information and Communication Technology (ICoICT), 2021. doi: 10.1109/ICoICT52021.2021.9527509