skip to main content

Sistem sensor untuk pemantauan kadar oksigen terlarut berbasis galvanik pada kolam budidaya ikan air tawar

A galvanic-based dissolved oxygen level monitoring sensor system in freshwater ponds

1Department of Computer Engineering, Universitas Nahdlatul Ulama Yogyakarta. Jl. Lowanu No.47, Sorosutan, Kec. Umbulharjo, Daerah Istimewa Yogyakarta 55162, Indonesia

2Department of Management, Universitas Negeri Yogyakarta. Jl. Colombo Yogyakarta No.1, Caturtunggal, Kec. Depok, Daerah Istimewa Yogyakarta 55281, Indonesia

Received: 1 Dec 2020; Revised: 1 Feb 2020; Accepted: 5 Mar 2021; Available online: 20 Apr 2021; Published: 30 Apr 2021.
Open Access Copyright (c) 2021 The Authors. Published by Department of Computer Engineering, Universitas Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This study aims to develop low-cost and environmentally friendly material galvanic-based dissolved oxygen sensors. A Dissolved oxygen (DO) sensor has been designed and fabricated on an 85 x 205 mm galvanic-based. The sensor structure device consists of Al-Zn reference layer electrode, Ag/AgCl active electrode, 120ml KCl electrolyte solvent 0,1 M, and closed by TiO2 membrane (PTFE). The Al-Zn formation reference electrode was done by Ag layer chlorination using FeCl3, and the TiO2 membrane was formed by TiO2 paste screen printing. The test was done to measure the sensor’s performance based on the current-voltage characteristics between 1.0 and 1.8 V. The results showed that a stable diffusion current was obtained when the input voltage was 1.5 V, resulting in the best sensor performance with a sensitivity of 0.7866 μA L/mg and a stable step response time of 3 mins. This prototype sensor showed high potential for prototyping for a low-cost water quality monitoring system.
Keywords: sensors design; dissolved oxygen; electrode; water; membrane
Funding: DRPM Ditjen Penguatan Risbang melalui skema BOPTN, Indonesia

Article Metrics:

  1. B. Supriyadi and A. Androva, “Perancangan dan pembuatan aerator kincir angin savonius darrieus sebagai penggerak pompa untuk aerasi tambak,” Riptek, vol. 9, no. 1, pp. 6–8, 2015
  2. M. F. Fuady, M. N. Supardjo, and Haeruddin, “Pengaruh pengelolaan kualitas air terhadap tingkat kelulushidupan dan laju pertumbuhan udang Vaname (Litopenaeus Vannamei) di PT. Indokor Bangun Desa, Yogyakarta,” Management of Aquatic Resources Journal, vol. 2, no. 4, pp. 155–162, 2013. doi: 10.14710/marj.v2i4.4279
  3. B. Nurlia and S. Sanjaya, “Analisa dan simulasi model kualitas air pada tambak dengan menggunakan kontrol logika fuzzy dan kontrol ON/OFF,” Skripsi, Institut Teknologi Sepuluh November, Surabaya, Indonesia, 2013
  4. T. Budiardi, T. Batara, and D. Wahjuningrum, “Tingkat konsumsi oksigen udang vaname (litopenaeus vannamei) dan model pengelolaan oksigen pada tambak intensif,” Jurnal Akuakultur Indonesia, vol. 4, no. 1, pp. 89–96, 2007. doi: 10.19027/jai.4.86-96
  5. S. Salmin, “Oksigen terlarut (DO) dan kebutuhan oksigen biologi (BOD) sebagai salah satu indikator untuk menentukan kualitas perairan,” Jurnal Oseana, vol. 30, no. 3, pp. 21–26, 2007
  6. J. Yu, “Introduction of three methods for determination of dissolved oxygen in water,” Current Fish Journal vol. 2, pp. 78–79, 2017
  7. S. Zhao, H. Liu, W. Ding, Y. Tang, and Y. Li, “The development and experiment of aeration control system in pond,” Journal of Nanjing Agriculture University, vol. 38, pp. 682–688, 2015. doi: 10.7685/j.issn.1000-2030.2015.04.024
  8. H. P. Dong, W. Zhang, and Y. L. Hao, “Galvanic cell oxygen sensors with active copper anode,” Instrumentation Science & Technology Journal, vol. 36, pp. 1–3, 2007
  9. Y. Zhang and I. Angelidaki, Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies. In Kgs. Lyngby; DTU Environment: Lyngby, Denmark, 2012
  10. J. Yu, H. Yang, S. Yang, and Y. Chen, “Determination of DO in water by conductometric titration,” Chinese Journal of Health Laboratory Technology, vol. 14, pp. 24–25, 2004
  11. F. Zhang, H. Du, Q. Yao, and F. Dandan, “Design of on-line measuring device for dissolved oxygen in water,” Computer Knowledge Technology, vol. 8, pp 247–248, 2017
  12. R. Martınez-Máñez, J. Soto, E. Garcia-Breijo, L. Gil, J. Ibáñez, and E. Llobet, “An electronic tongue design for the qualitative analysis of natural waters,” Sensors and Actuators B: Chemical, vol. 104, no. 2, pp. 302-307, 2005. doi: 10.1016/j.snb.2004.05.022
  13. S. Zhuiykova and K. Kalantar-zadeh, “Development of antifouling of electrochemical solid state dissolved oxygen sensors based on nanostructured Cu0.4Ru3.4O7 + RuO2 sensing electrodes,” Electrochimica Acta, vol. 73, pp 105–111, 2012. doi : 10.1016/j.electacta.2011.11.018
  14. R. Martínez-Máñez, J. Soto, J. Lizondo-Sabater, E. García-Breijo, L. Gil, J. Ibáñez, and S. Alvarez, “New potentiomentric dissolved oxygen sensors in thick film technology,” Sensor Actuators B: Chemical, vol. 101, no. 3, pp. 295–301, 2004. doi : 10.1016/j.snb.2004.03.008
  15. X. Zhang and R.-D. Sun, “Determination of dissolved oxygen in water by quasi-equilibrium method,” Xiandai Huagong/Modern Chemical Industry, vol. 18, no. 4, pp. 170–173, 2014
  16. P. Zimmermann, A. Weltin, G. A. Urban, and J. Kieninger, “Active potentiometry for dissolved oxygen monitoring with platinum electrodes,” Sensors (Switzerland), vol. 18, no. 8, 2018. doi: 10.3390/s18082404
  17. E. Salfia, A. Azhar, and M. Kamal, “Rancang bangun alat pengendalian dan monitoring kualitas air tambak udang berbasis salinitas dan kadar oksigen terlarut,” Jurnal Elektro, vol. 2, no. 2, pp. 24–29, 2018
  18. I. R. Mardhiyah, “Sistem akuisisi data pengkuran oksigen terlarut pada air tambak menggunakan sensor dissolved oxygen,” Jurnal Teori dan Aplikasi Fisika, vol. 5, no. 2, pp. 1–5, 2017
  19. L. Fu, Y. Zheng, Z. Fu, A. Wang, and W. Cai, “Dissolved oxygen detection by galvanic displacement-induced graphene/silver nano composite,” Bulletin Material Science, vol. 38, no. 3, pp. 611–616, 2015. doi: 10.1007/s12034-015-0900-5
  20. G. Wiranto, S. Widodo, I. D. P. Hermida, R. V Manurung, G. Sugandi, and Z. Arifin, “Design and fabrication of thick film dissolved oxygen sensor based on ruo2 working electrodes for water quality monitoring,” Materials Science Forum, vol. 917, pp. 59–63, 2018. doi: 10.4028/www.scientific.net/MSF.917.59
  21. A. Debataraja and R. V. Manurung, “Mikrotranduser deteksi kadar oksigen terlarut aplikasi monitoring kualitas air,” Jurnal Teknik Elektro, vol. 2, no. 2, pp. 73–78, 2011
  22. G. W. McLaughlin, K. Braden, B. Franc and G. T.A. Kovacs, “Microfabricated solid-state dissolved oxygen sensor,” Sensors and Actuators B: Chemical, vol. 83, no. 1-3, pp. 138-148, 2002. doi: 10.1016/S0925-4005(02)00021-7
  23. C.-C. Lu, Y.-S. Huang, J.-W. Huang, C.-K. Chang, and S.-P. Wu, “A Macroporous TiO2 oxygen sensor fabricated using anodic aluminium oxide as an etching mask,” Sensors, vol. 10, no. 1, pp. 670–683, 2010. doi: 10.3390/s100100670

Last update:

  1. Automated Redox Monitoring System (ARMS): An Instrument for Measuring Dissolved Oxygen Levels Using a Potential Redox Sensor (ORP) in a Prototype of Shrimp Farming Pond with an Internet-Based Monitoring System

    Ridwan Siskandar, Wiyoto Wiyoto, Andri Hendriana, Julie Ekasari, Billi Rifa Kusumah, Glenaldi Halim, Indi Jaka Nugraha. Journal of Aquaculture and Fish Health, 11 (2), 2022. doi: 10.20473/jafh.v11i2.31487

Last update: 2024-11-11 12:24:10

No citation recorded.