skip to main content

Kendali kecepatan motor DC berbasis fuzzy logic controller dengan aksi integral untuk mengeliminasi error steady-state

Jurusan Teknik Elektro, Politeknik Negeri Bandung, Indonesia

Received: 31 Aug 2021; Published: 24 Sep 2024.
Open Access Copyright (c) 2024 Adnan Rafi Al Tahtawi, Kartono Wijayanto, R. Aryo Bimo Surya Putra
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Kendali kecepatan motor DC dengan sistem cerdas seperti Fuzzy Logic Controller (FLC) dianggap lebih efektif karena tidak perlu model dari plant  dalam perancangan pengendalinya. Namun, secara matematis FLC tidak dapat menghilangkan error steady-state pada respon pengendalian. Penelitian ini bertujuan untuk merancang Fuzzy Integral Controller (FIC) untuk mengeliminasi error steady-state pada kendali kecepatan motor DC. Pengendali ini dibentuk oleh FLC dan kendali integral. FLC dirancang dengan masukan error dan perubahan error dengan keluaran berupa sinyal Pulse Width Modulation (PWM). Aksi kendali integral ditambahkan pada FLC karena kemampuannya untuk menghilangkan error steady-state. FIC kemudian diuji melalui simulasi MATLAB/Simulink dan eksperimen perangkat keras. Hasil pengujian menunjukkan bahwa FIC mampu menghasilkan kinerja pengendalian lebih baik jika dibandingkan dengan kendali PI dan FLC. FIC menghasilkan error steady-state 0% pada pengujian secara simulasi, sedangkan pada pengujian secara eksperimen nilai error steady-state terkecil diperoleh sebesar 0,42% yang disebabkan oleh adanya derau pada sensor.

Fulltext Email colleagues
Keywords: kendali kecepatan; motor DC; fuzzy integral controller; error steady-state

Article Metrics:

  1. U. Usmardi, Z. Zulfikar, and A. Akhyar “Implementasi Sistem Kendali Kecepatan Motor DC Dengan Metode PID Berbasis Mikrokontroller Atmega 8535,” Jurnal Litek: Jurnal LIstrik, Telekomunikasi Elektronika, vol. 14, no. 1, pp. 18–23, 2017
  2. W. J. Tang, Z. T. Liu, and Q. Wang, “DC motor speed control based on system identification and PID auto tuning,” Chinese Control Conf. CCC, no. 61403422, pp. 6420–6423, 2017, doi: 10.23919/ChiCC.2017.8028376
  3. S. N. Al-Bargothi, G. M. Qaryouti, and Q. M. Jaber, “Speed control of DC motor using conventional and adaptive PID controllers,” Indones. J. Electr. Eng. Comput. Sci., vol. 16, no. 3, pp. 1221–1228, 2019, doi: 10.11591/ijeecs.v16.i3.pp1221-1228
  4. S. Ekinci, B. Hekimoglu, A. Demiroren, and E. Eker, “Speed Control of DC Motor Using Improved Sine Cosine Algorithm Based PID Controller,” 3rd Int. Symp. Multidiscip. Stud. Innov. Technol. ISMSIT 2019 - Proc., no. December, 2019, doi: 10.1109/ISMSIT.2019.8932907
  5. R. Muhardian and K. Krismadinata, “Kendali Kecepatan Motor DC Dengan Kontroller PID dan Antarmuka Visual Basic,” JTEV (Jurnal Tek. Elektro dan Vokasional), vol. 6, no. 1, pp. 328–339, 2020
  6. M. D. Surindra, W. P. Widyaningsih, M. Supriyo, T. H. Mulud, “Sistem Kontrol Proportional Integral Derivative (PID) untuk Mengatur Kecepatan Motor DC Menggunakan Mikrokontroler,” Prosiding Seminar Nasional NCIET Vol. 1 (2020), Semarang, 2020, B528-B534
  7. N. Chitsanga and S. Kaitwanidvilai, “2DOF H infinity Control for DC Motor using Genetic Algorithms,” Lect. Notes Eng. Comput. Sci., vol. 2209, no. January, pp. 272–276, 2014
  8. A. H. Miry, A. H. Mary, and M. H. Miry, “Mixed robust controller with optimized weighted selection for a DC servo motor,” ACM Int. Conf. Proceeding Ser., pp. 178–183, 2019, doi: 10.1145/3321289.3321304
  9. N. Abroug and B. Moriniere, “Enhancing motor torque control by implementing H-infinity controller and compensating electronics nonlinearities,” IEEE Int. Symp. Ind. Electron., no. June, pp. 111–116, 2014, doi: 10.1109/ISIE.2014.6864595
  10. M. Jibril, M. Tadese and E. Alemayehu, “Speed Control of Ward Leonard Layout System using H infinity Optimal Control,” Researcher Journal, vol. 12, no. 11, pp. 35–39, 2020, doi: 10.7537/marsrsj121120.08
  11. Y. A. Almatheel and A. Abdelrahman, “Speed control of DC motor using Fuzzy Logic Controller,” Proc. - 2017 Int. Conf. Commun. Control. Comput. Electron. Eng. ICCCCEE 2017, 2017, doi: 10.1109/ICCCCEE.2017.7867673
  12. W. G. M. Elnaim and S. F. Babiker, “Comparative study on the speed of DC motor using PID and FLC,” Proc. 2016 Conf. Basic Sci. Eng. Stud. SGCAC 2016, pp. 24–29, 2016, doi: 10.1109/SGCAC.2016.7458001
  13. G. A. Adepoju, I. A. Adeyemi, and O. S. Oni, “Application of Fuzzy Logic to the Speed Control of DC Motor,” Int. J. Eng. Trends Technol., vol. 15, no. 5, pp. 215–219, 2014, doi: 10.14445/22315381/ijett-v15p243
  14. N. L. Ismail, K. A. Zakaria, N. S. M. Nazar, M. Syaripuddin, A. S. N. Mokhtar, and S. Thanakodi, “DC motor speed control using fuzzy logic controller,” AIP Conf. Proc., vol. 1930, no. IntCET, pp. 1–6, 2018, doi: 10.1063/1.5022920
  15. U. Alset, A. Apte, and H. Mehta, “Implementation of Fuzzy Logic based High Performance Speed Control System for PMDC motor using ATMEGA-328P-PU Micro-controller,” Proc. CONECCT 2020 - 6th IEEE Int. Conf. Electron. Comput. Commun. Technol., pp. 15–19, 2020, doi: 10.1109/CONECCT50063.2020.9198569
  16. Z. Tir, O. Malik, M. A. Hamida, H. Cherif, Y. Bekakra, and A. Kadrine, “Implementation of a fuzzy logic speed controller for a permanent magnet dc motor using a low-cost Arduino platform,” 2017 5th Int. Conf. Electr. Eng. - Boumerdes, ICEE-B 2017, vol. 2017-Janua, pp. 1–4, 2017, doi: 10.1109/ICEE-B.2017.8192218
  17. K.-W. Lee and H.-S. Choi, “Analysis of Steady State Error on Simple FLC,” J. Inst. Control. Robot. Syst., vol. 17, no. 9, pp. 897–901, 2011, doi: 10.5302/j.icros.2011.17.9.897
  18. Y. Pattanapong and C. Deelertpaiboon, “Ball and plate position control based on fuzzy logic with adaptive integral control action,” 2013 IEEE Int. Conf. Mechatronics Autom. IEEE ICMA 2013, no. August 2013, pp. 1513–1517, 2013, doi: 10.1109/ICMA.2013.6618138
  19. K. Ogata, Modern control engineering. 2017
  20. A. R. Al Tahtawi, “Kendali Posisi Motor DC Menggunakan Logika Fuzzy Interval Tipe 2 The Position Controlling of DC Motor Using Interval Type-2 Fuzzy Logic,” Telka, vol. 7, no. 1, pp. 1–10, 2021
  21. A. R. Al Tahtawi, S. Yahya, B. Setiadi, and C. Marsya, “The Implementation of Embedded Fuzzy Logic Controller on Liquid Level Control System,” International Seminar of Science and Applied Technology (ISSAT 2020), Atlantis Press, vol. 198, no. Issat, pp. 161–166, 2020, doi: 10.2991/aer.k.201221.028
  22. Z. Has, A. H. Muslim, and N. A. Mardiyah, “Adaptive-fuzzy-PID controller based disturbance observer for DC motor speed control,” Int. Conf. Electr. Eng. Comput. Sci. Informatics, vol. 2017-Decem, no. September, pp. 19–21, 2017, doi: 10.1109/EECSI.2017.8239165
  23. M. R. Djalal and Rahmat, “Optimisasi Kontrol Pid Untuk Motor Dc Magnet Permanen Menggunakan Particle Swarm Optimization,” J. TAM ( Technol. Accept. Model ), vol. 8, no. 2, pp. 117–122, 2017
  24. M. Asbi, S. Subiyanto, and Y. Primadiyono, “Simulasi Kendali Motor DC Penguat Terpisah Menggunakan Kendali Fuzzy-FOPID,” Jetri J. Ilm. Tek. Elektro, vol. 17, no. 1, p. 99, 2019, doi: 10.25105/jetri.v17i1.4109

Last update:

No citation recorded.

Last update: 2025-01-22 04:16:33

No citation recorded.