skip to main content

Optimalisasi model prediksi kesesuaian lahan kelapa sawit menggunakan algoritme pohon keputusan spasial

Optimization for prediction model of palm oil land suitability using spatial decision tree algorithm

1Department of Informatics, Universitas Teknokrat Indonesia, Indonesia

2Department of Computer Science, Institut Pertanian Bogor, Indonesia

Received: 4 Feb 2020; Revised: 3 May 2020; Accepted: 5 May 2020; Available online: 11 May 2020; Published: 31 Jul 2020.
Open Access Copyright (c) 2020 Jurnal Teknologi dan Sistem Komputer under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract
Land suitability evaluation has a vital role in land use planning aimed to increase food production effectiveness. Palm oil is a leading and strategic commodity for Indonesian people, which is predicted consumption will exceed production in the future. This study aims to evaluate palm oil land suitability using a spatial decision tree algorithm that is conventional decision tree modification for spatial data classification with adding spatial join relation. The spatial dataset consists of eight explanatory layers (soil nature and characteristics), and a target layer (palm oil land suitability) in Bogor District, Indonesia. This study produced three models, where the best model was obtained based on optimizing accuracy (98.18 %) and modeling time (1.291 seconds). The best model has 23 rules, soil texture as the root node, two variables (drainage and cation exchange capacity) are uninvolved, with land suitability visualization obtains percentage S2 (29.94 %), S3 (53.16 %), N (16.57 %), and water body (0.33 %).

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Results
Summary of Model Evaluation
Subject
Type Research Results
  Download (14KB)    Indexing metadata
Email colleagues
Keywords: land suitability; palm oil; spatial decision tree; spatial join relation
Funding: Universitas Teknokrat Indonesia;Institut Pertanian Bogor

Article Metrics:

  1. R. N. Rosa and S. Zaman, “Pengelolaan pembibitan tanaman kelapa sawit (elais guineensis jacq.) di kebun Bangun Bandar, Sumatera Utara,” Buletin Agrohorti, vol. 5, no. 3, pp. 325-333, 2017. doi: 10.29244/agrob.5.3.325-333
  2. Subdirektorat Statistik Tanaman Perkebunan, Indonesian oil palm statistics 2018. Badan Pusat Statistik, 2019
  3. Z. Helwani, E. Saputra, W. Fatra, and S. Herman, “Pembuatan biodiesel dari minyak sawit off-grade menggunakan katalis cao/serbuk besi,” in Seminar Nasional Industri Kimia dan Sumber Daya Alam, Banjarmasin, Indonesia, Aug. 2016, pp. 13-18
  4. Kementerian Perdagangan RI, Laporan akhir analisis strategi Indonesia untuk meningkatkan akses pasar produk crude palm oil (cpo) Indonesia ke Amerika Serikat. Kementerian Perdagangan RI, 2015
  5. Direktorat Jenderal Pertanian, Pedoman budidaya kelapa sawit (elais guineensis) yang baik. Kementerian Pertanian RI, 2014
  6. D. Djaenudin, H. Marwan, H. Subagjo, and A. Hidayat, Petunjuk teknis evaluasi lahan untuk komoditas pertanian. Balai Besa spatial decision tree r Litbang Sumberdaya Lahan Pertanian (BBSDLP), Bogor: Badan Litbang Pertanian, 2011
  7. A. Aldababseh, M. Temimi, P. Maghelal, O. Branch, and V. Wulfmeyer, “Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment,” Sustainability, vol. 10, no. 3, pp. 803, 2018. doi: 10.3390/su10030803
  8. Badan Penyuluhan dan Pengembangan SDM Pertanian (BPPSDMP), Rencana strategis 2015-2019, edisi kedua. BPPSDMP-Kementerian Pertanian, 2017
  9. Food and Agriculture Organization, A framework for land evaluation. FAO Soil Bulletin No. 32, Rome: FAO-UNO, 1976
  10. S. Pariamanda, A. Sukmono, and H. Haniah, “Analisis kesesuaian lahan untuk perkebunan kopi di kabupaten Semarang,” Jurnal Geodesi Undip, vol. 5, no. 1, pp. 116-124, 2016
  11. R. Rahayu, M. Mujiyo, and R. U. Arini, “Land suitability evaluation of shallot (allium ascalonicum l.) at production centres in Losari district, Brebes,” Journal of Degraded and Mining Land Management, vol. 6, no. 1, pp. 1505-1511, 2018. doi: 10.15243/jdmlm.2018.061.1505
  12. I. W. Nuarsa, I. N. Dibia, K. Wikantika, D. Suwardhi, and I. N. Rai, “GIS based analysis of agroclimate land suitability for banana plants in Bali province, Indonesia,” HAYATI Journal of Biosciences, vol. 25, no. 1, pp. 11-17, 2018
  13. L. Qu, Y. Shao, and L. Zhang, “Land suitability evaluation method based on GIS technology,” in Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, USA, Aug. 2013, pp. 7-12, 2013. doi: 10.1109/Argo-Geoinformatics.2013.6621869
  14. S. Hartati and I. S. Sitanggang, “A fuzzy based decision support system for evaluating land suitability and selecting crops,” Journal of Computer Science, vol. 6, no. 4, pp. 417-424, 2010. doi: 10.3844/jcssp.2010.417.424
  15. S. E. Rahim, A. A. Supli, and N. Damiri, “Developing a land suitability evaluation tool in mobile Android application for rubber, cocoa and oil palm,” Journal of ISSAAS (International Society for Southeast Asian Agricultural Sciences), vol. 22, no. 2, pp. 80-90, 2016
  16. J. A. Widians, M. Taruk, Y. Fauziah, and H. J. Setyadi, “Decision support system on potential land palm oil cultivation using promethee with geographical visualization,” Journal of Physics: Conference Series, vol. 1341, no. 4, 042011, pp. 1-9, 2019. doi: 10.1088/1742-6596/1341/4/042011
  17. S. Rinzivillo and F. Turini, “Classification In geographical information systems,” in European Conference on Principles of Data Mining and Knowledge Discovery. Springer Link, 2004, pp. 374-385. doi: 10.1007/978-3-540-30116-5_35
  18. A. Nurkholis and I. S. Sitanggang. “A spatial analysis of soybean land suitability using spatial decision tree algorithm,” in Sixth International entropy Symposium on LAPAN-IPB Satellite, Bogor, Indonesia, Dec. 2019, pp. 147-156. doi: 10.1117/12.2541555
  19. I. S. Sitanggang, R. Yaakob, N. Mustapha, and A. N. Ainuddin, “Classification model for hotspot occurrences using spatial decision tree algorithm,” Journal of Computer Science, vol. 9, no. 2, pp. 244 entropy-251, 2013. doi: 10.3844/jcssp.2013.244.251
  20. I. S. Sitanggang, R. Yaakob, N. Mustapha, and A. N. Ainuddin, “A decision tree based on spatial relationships for predicting hotspots in peatlands,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 12, no. 2, pp. 511-518, 2014. doi: 10.12928/TELKOMNIKA.v12i2.2036
  21. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian (BBSDLP), Atlas peta tanah semi detail skala 1:50.000, kabupaten Bogor, provinsi Jawa Barat. Bogor: Badan Penelitian dan Pengembangan Pertanian-Kementerian Pertanian, 2016
  22. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian (BBSDLP), Atlas peta kesesuaian lahan dan arahan komoditas pertanian pertanian, kabupaten Bogor, provinsi Jawa Barat, Skala 1:50.000. Bogor: Badan Penelitian dan Pengembangan Pertanian-Kementerian Pertanian, 2016
  23. S. Mukherjee, A. Mukhopadhyay, and A. B. A. M. Sananda, “Digital elevation model generation and retrieval of terrain attributes using CARTOSAT-1 stereo data,” International Journal of Science and Technology, vol. 2, no. 5, pp. 265-271, 2012
  24. P. Oosterom, W. Quak, and T. Tijssen, “About invalid, valid and clean polygons,” in Developments in Spatial Data Handling. Springer Link, 2005, pp. 1-16. doi: 10.1007/3-540-26772-7_1
  25. I. S. Sitanggang, R. Yaakob, N. Mustapha, and A. A. B. Nuruddin, “An extended ID3 decision tree algorithm for spatial data,” in International Conference on Spatial Data Mining and Geographical Knowledge Services, Fuzhou, China, Jul. 2011, pp. 48-53. doi: 10.1109/ICSDM.2011.5969003
  26. M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Information Processing & Management, vol. 45, no. 4, pp. 427-437, 2009. doi: 10.1016/j.ipm.2009.03.002
  27. Kementerian Pertanian Republik Indonesia, Produksi, luas panen dan produktivitas sayuran di Indonesia. Jakarta: Pusat Data dan Sistem Informasi-Kementan RI, 2016
  28. Y. Wang, Y. Li, Y. Song, Y. Rong, and S. Zhang, “Improvement of ID3 algorithm based on simplified information entropy and coordination degree,” Algorithms, vol. 10, no. 4, 124, pp. 1-18, 2017. doi: 10.3390/a10040124

Last update:

  1. Visualization of agroecological suitability of peatland to pineapple productivity in Kampar District with Fuzzy approach

    F M Putra, I S Sitanggang, Sobir, R Gusmendasari. IOP Conference Series: Earth and Environmental Science, 771 (1), 2021. doi: 10.1088/1755-1315/771/1/012019
  2. Identification Method of Influencing Factors of Hospital Catering Service Satisfaction Based on Decision Tree Algorithm

    Siyao Li, Di Xu, Yang Liu, Rui Wang, Jian Zhang, Fahd Abd Algalil. Applied Bionics and Biomechanics, 2022 , 2022. doi: 10.1155/2022/6293908
  3. Prediction Model for Soybean Land Suitability Using C5.0 Algorithm

    Andi Nurkholis, Styawati Styawati. Jurnal Online Informatika, 6 (2), 2021. doi: 10.15575/join.v6i2.711
  4. Implementation of Fuzzy C-Means and Self-Organizing Map for Data Clustering of Palm Oil

    Siti Sarah, Mustakim, Rice Novita, Nesdi Evrilyan Rozanda. 2023 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2023. doi: 10.1109/ISITIA59021.2023.10221173
  5. Human Resource Intelligent Scheduling Algorithm Based on Decision Tree Algorithm

    Na Feng. 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC), 2022. doi: 10.1109/ICMNWC56175.2022.10031690
  6. Improvement Design of Functional Modules of College English Network Teaching System Based on Decision Tree Algorithm

    Hui Li, Muhammad Muzammal. Mobile Information Systems, 2022 , 2022. doi: 10.1155/2022/5110709

Last update: 2025-01-21 01:51:11

  1. Visualization of agroecological suitability of peatland to pineapple productivity in Kampar District with Fuzzy approach

    F M Putra, I S Sitanggang, Sobir, R Gusmendasari. IOP Conference Series: Earth and Environmental Science, 771 (1), 2021. doi: 10.1088/1755-1315/771/1/012019