
Available at https://jtsiskom.undip.ac.id (3 October 2022)
DOI:10.14710/jtsiskom.2022.xxxxx

Jurnal Teknologi dan Sistem Komputer, 10(4), 2022, 1-10

Copyright ©2021, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

An Embedded Computer Vision using Convolutional Neural Network for

Maze Classification and Robot Navigation

Gunawan Dewantoro*,1), Dinar Rahmat Hadiyanto 2), Andreas A. Febrianto3)

Department of Electronic and Computer Engineering, Satya Wacana Christian University

Jl. Diponegoro 52-60, Salatiga, Indonesia 50711

 How to cite: G. Dewantoro, D. R. Hadiyanto, and A. A. Febrianto, " An Embedded Computer Vision using

Convolutional Neural Network for Maze Classification and Robot Navigation," Jurnal Teknologi dan Sistem

Komputer, vol. 9, no. x, pp. xx-xx, 2021. doi: 10.14710/jtsiskom.2022.xxxxx [Online].

Abstract –Traditionally, the maze solving robots employ

ultrasonic sensors to detect the maze walls around the

robot. However, this approach only perceives the

presence of the objects without recognizing the type of

these objects. Therefore, computer vision has become

more popular for classification purpose in robot

applications. In this study, a maze solving robot is

equipped with a camera to recognize the types of

obstacles in a maze. The types of obstacles are classified

as: intersection, dead end, T junction, finish zone, start

zone, straight path, T–junction, left turn, and right turn.

Convolutional neural network is employed to train the

robot using a total of 24,000 images to recognize the

obstacles. Jetson Nano development kit is used to

implement the trained model and navigate the robot.

The results shows an average training accuracy of 82%

with a training time of 30 minutes 15 seconds. As for

the testing, the lowest accuracy is 90% for the T-

junction with the computational time being 500

milliseconds for each frame. Therefore, the

convolutional neural network is adequate to serve as

classifier and navigate a maze solving robot.

Keywords – convolutional neural network; maze;

navigation; classification; robot

I. INTRODUCTION

Over the last few decades, the interest in deep neural

network has soared among researchers as it is able to

tackle with a large number of data. The applications of

deep neural network encompass a range of fields by

creating various artificial intelligence models, one of

which is an image detection engine using a deep

convolutional neural network (CNN). Basically, deep

convolutional neural network works by extracting

features in digital images. These key features of an image

characterize a specific object that can be used to classify

and discriminate against other objects. Several pre-

processing stages such as image normalization and image

segmentation are essential for the feature extraction

process. The result of feature extraction is subsequently

used for image classification or detection [1].

Deep neural networks play a variety of roles in many

fields. In the health sector, deep convolutional neural

networks are used to detect lungs disease [2], detect mask

users as a preemptive measure against the spread of

Covid-19 [3][4], and to recycle plastic waste such as nails

and screws [3]. In the automotive field, deep

convolutional neural networks are applied to recognize

traffic signs and also responsible in the navigation of

autonomous cars [4] - [6]. In addition, other applications

such as human facial expression detection [7] and face

detection for security can also take advantage of deep

convolutional neural network [8] - [12].

In robotic applications, neural network is widely used

for maze mapping application [13] - [16]. As for the robot

navigation, maze robots traditionally employ ultrasonic

sensors to detect the circumstances around the robot -

[17] and apply the right-handed algorithm to determine

the robot's motion [18]. However, ultrasonic sensors has

shortcomings as it can not recognize the type of objects

ahead; therefore, difficult to visualize the grand picture

of the maze. In this study, an artificial neural network is

used to help robots navigate in a maze. The dataset was

captured directly using OpenCV with the amount of

24,000 images data. By utilizing convolution operations

in digital image data, the robot can learn from the training

data to recognize the types of obstacles being faced by

the robot. Convolutional neural network extracts the

characteristics of digital images through a multitude of

hidden layers that are built so as to find a network model

that is considered appropriate. Once the trained model is

obtained, the robot is not only able to navigate but able to

recognize the types of obstacles in the maze.

II. RESEARCH METHODS

A. Experimental stages

Figure 1 shows the workflow used in this study. A

webcam is mounted on the robot to capture a set of

images. To capture the image, each frame in the video

recording is separately taken until collecting 3000 image

data for each class. The capture is governed by Jetson

Nano by means of program listings in the OpenCV

library. The image dataset is grouped into 8 classes,

namely intersection, dead end, T junction, finish zone,

start zone, straight path, T–junction, left turn, and right

turn. Each class contains 2500 training data, 430

validation data, and 70 test data. In digital image pre-

processing, the original digital image is rescaled from

1080×720 pixels to 224×84 pixels. Subsequently, the

*) Corresponding author (Gunawan Dewantoro)

Email: gunawan.dewantoro@uksw.edu

https://crossmark.crossref.org/dialog/?doi=10.14710/jtsiskom.2022.xxxxx&domain=pdf&date_stamp=2022-01-31
https://dx.doi.org/10.14710/jtsiskom.2021.xxxxx

Available at https://jtsiskom.undip.ac.id (3 October 2022)
DOI:10.14710/jtsiskom.2022.xxxxx

Jurnal Teknologi dan Sistem Komputer, 10(4), 2022, 1-10

Copyright ©2021, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

image is converted from multiple channels to single

channel by generating the grayscale images. Then, the

collected image data are randomly selected and grouped

as training data and validation data which will then be

used for training in convolutional neural networks. The

network model is composed by a multitude of hidden

layers and functions. Some parameters within the

network are finely tuned to yield the best outcome, i.e.

accuracy. Finally, the trained network model is tested to

see if the robot can correctly classify the obstacles.

Figure 1. Research workflow

The performance assessment is carried out by running

the robot along the maze. The network model is embed-

ded in the Nvidia Jetson Nano developer kit and equipped

with a 720p30fps webcam. The test is carried out using

70 images for each class which are not previously used

for training and validation. The detection results are then

used for assessing the correctness of the robot's motion.

The test results are expected that the robot is able to clas-

sify with an accuracy of 80% and move correctly based

on the classification results.

B. The hardware

The robot is constructed in three levels and equipped

with two wheels for the locomotion drives, as shown in

Figure 2 and 3. The robot is able to traverse according to

the image classifier program. All commands are

processed in the Nvidia Jetson Nano developer kit which

has a Quad-core ARM A57 processor with a clock speed

of 1.43 GHz, a 128-core Maxwell GPU, RAM of 4 GB,

and internal storage of 64 GB. In addition, the robot is

also equipped with a Logitech C92 webcam, gearbox, Li-

Po batteries, motor drivers, and voltage regulators.

Jetson Nano developer kit is employed to perform the

image classification. The outcome of this classification is

used to determine the robot's motion using Python3

programming. The image classification process begins

when the robot is turned on and start capturing the image.

The predetermined initial position is always located in

one spot, i.e. the starting zone. Then, the convolutional

neural network classifies the obstacles with respect to the

captured image in front of robot. Having received the

classification results, the robot determines the motion of

each wheel to steer the robot accordingly, as shown in

Table 1. In this study, the robot applies the right-hand

rule algorithm, meaning that it prioritizes turning right

whenever it encounters two or more alternatives to pass

through, such as intersections and T-junctions. The robot

repeats the commands and keeps moving until it reaches

the finish zone and stops.

Figure 2. Front view of the robot

Figure 3. Back view of the robot

To conduct the experiment, a 120cm×240cm maze

was built from 1-cm thick plywood with white walls and

black floor, as depicted in Figure 4. The maze comprises

of eight types of obstacles that will be learned by the

robot as mentioned above. The design of the maze was

Image Dataset

Dataset Split

(Training Data, Validation Data)

Image Preprocessing

(Rescale, Width Shift, Height Shift, Zoom Range)

Hidden Layer Modeling

(Convolution Layer, Activation Function, Pooling

Layer, Dropout Layer, Flatten Layer, Fully
Connected Layer)

Model Compiling

(Loss Function, Optimizer)

Model Training

(Epochs, Batch Size, Callbacks)

Model Testing

https://crossmark.crossref.org/dialog/?doi=10.14710/jtsiskom.2022.xxxxx&domain=pdf&date_stamp=2022-01-31

Available at https://jtsiskom.undip.ac.id (3 October 2022)
DOI:10.14710/jtsiskom.2022.xxxxx

Jurnal Teknologi dan Sistem Komputer, 10(4), 2022, 1-10

Copyright ©2021, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

inspired by the realistic road, with white markers that can

be a feature used in the neural network.

Table 1. Instruction table

Figure 4. The maze

C. The dataset

The data was taken using a 1080p webcam and

OpenCV library. The resulting images are in grayscale

with dimension of 224×84×1 pixel. The complete dataset

is as much as 24,000 and divided into 8 classes for each

training and validation data, as shown in Table 2. Figure

5 shows the sample of image data for each class used for

training and validating. The variation of images used in

model training is constituted from a range of image point

of views or different angle perspective captured by the

camera. These images might be taken from the same

video recording but at different sampling instants, some

of which are blurry.

Table 2. Number of data for each class

 (a) (b) (c)

 (d) (e) (f)

 (g) (h)

Figure 5. Dataset images: (a) intersection, (b) dead end,

(c) finish zone, (d) start zone, (e) straight path, (f) T-

junction, (g) left turn, (h) right turn.

D. Convolutional neural network modeling

Prior to the training phase, the image is split into

training and validation data. At this stage, the data is

randomly split using features in the Tensorflow

framework-Keras API with a ratio of 85:15. This split

ratio provides 2,500 and 430 data for training and

validation, respectively. Then, these split data proceed

with the augmentation process, which includes rescaling,

width shifting, height shifting, and zoom range adjusting.

These augmentations aims to make the data more flexible

during training.

Classification

Result

Motor Output

Left Right

Intersection Forward Stop

Dead End Forward Backward

Finish Zone Stop Stop

Start Zone Forward Backward

Straight Path Forward Forward

T-Junction Forward Stop

Left Turn Stop Forward

Right Turn Forward Stop

No
Classes

Name

Number of Images

Training Validation Testing

1 Intersection 2500 430 70

2 Dead End 2500 430 70

3 Finish Zone 2500 430 70

4 Start Zone 2500 430 70

5 Straight Path 2500 430 70

6 T-Junction 2500 430 70

7 Left Turn 2500 430 70

8 Right Turn 2500 430 70

https://crossmark.crossref.org/dialog/?doi=10.14710/jtsiskom.2022.xxxxx&domain=pdf&date_stamp=2022-01-31

Available at https://jtsiskom.undip.ac.id (3 October 2022)
DOI:10.14710/jtsiskom.2022.xxxxx

Jurnal Teknologi dan Sistem Komputer, 10(4), 2022, 1-10

Copyright ©2021, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

Table 3. Convolutional neural network architecture

The architecture the convolutional neural network

was selected by adopting several previously used

architectures such as LeNet, AlexNet, ZF Net [19][20].

The first layer is convolution layer with 224×84

grayscale image data input. This layer uses a kernel size

of 3×3, 16 channels, and a rectified linear unit (ReLu)

activation function. The second and third layer employ

the same layer model as before, and then followed by

maxpooling layers with a filter size or kernel size of 2×2.

The subsequent three layers use the same model with 32

channels. For the next three layers, 64 channels are used,

and then a flatten layer is utilized to convert the data

dimension to 1×28800. The final layer is a fully-

connected layer that will be used for prediction and

classification. The full architecture of the convolutional

neural network is shown in Table 3. The model training

process uses a total of 1,370,676 parameters, equipped

with cross-entropy as the loss function and Adam

function as the optimization algorithm.

III. RESULT AND DISCUSSION

To demonstrate the performance, a number of

indicators are used to assess the results. First, the training

and validation accuracy are measured during the model

learning stage. Then the trained network model is tested

by applying a testing dataset not previously used during

the training stage. The size of testing data is 70 images

for each class. The result of model testing is represented

in the form of an evaluation matrix. Finally, an

experiment is done by demonstrating the maze solving

robot in a real maze.

A. Model training

The network model training is based on the hidden

layer architecture as explained in Table 3. The training

process run iteratively, with 30 epochs being the upper

bound of the training period. The value of the accuracy

of the training results and the validation of each epoch is

directly proportional to the quality of the model.

Meanwhile, the loss indicates how well the model fits the

training data or new data.

In this study, we take advantage of the early stopping

feature in keras.callbacks with a patience value of 6. This

aims to take the best value and terminate the training

process if the training result does not improve after the

next 6 steps. This is also effective to avoid network

overfitting [21]-[23].

Table 4 implies that the best model training is at

epoch 13, with a training accuracy of 82.41% and

validation accuracy of 90.52%. This model is the best

model because the validation loss is the parameter

required for the early stopping feature by keras.callbacks.

If the validation loss does not improve for the next 6

epochs, then the training process terminates. As we can

see in Table 4, the validation loss of epoch 14 – 19 still

greater than that of epoch 13. As a result, the training

process stops at epoch 19 even though the maximum

epoch is 30.

B. Model testing

The confusion matrix in Figure 6 states the quality of

the model that allows visualization of the performance of

the Convolutional Neural Network. The number of

testing data for each class is 70, giving a total of 560

testing dataset. The quality of model is in accordance

with the accuracy results in Table 4. The result

representation is composed based on the confusion

matrix variant 3 as explained in [24].

No Layer Output Shape

1 Convolution (None, 222, 82, 6)

2 Average Pooling (None, 111, 41, 6)

3 Convolution (None, 109, 39, 16)

4 Average Pooling (None, 54, 19, 16)

5 Convolution (None, 52, 17, 32)

6 Convolution (None, 50, 15, 32)

7 Average Pooling (None, 25, 7, 32)

8 Flatten (None, 5600)

9 Dense (None, 120)

10 Dense (None, 84)

11 Dropout (None, 84)

12 Dense (None, 8)

Table 4. Model training process

Epoch
Accuracy Loss

Train Val. Train Val.

1 0.3058 0.5384 1.7311 1.1263

2 0.5078 0.5253 1.2420 1.0416

3 0.5814 0.6599 1.0440 0.9691

4 0.6243 0.7994 0.9452 0.7203

5 0.6683 0.9119 0.8470 0.5213

6 0.7061 0.9087 0.7715 0.5029

7 0.7345 0.9174 0.7046 0.3578

8 0.7522 0.8128 0.6608 0.5025

9 0.7742 0.8788 0.6139 0.3414

10 0.7878 0.9276 0.5777 0.2810

11 0.8035 0.8407 0.5367 0.4696

12 0.7213 0.9061 0.4995 0.2676

13 0.8241 0.9052 0.4781 0.2504

14 0.8339 0.8273 0.4591 0.5457

15 0.8467 0.8724 0.4229 0.3141

16 0.8560 0.8799 0.3993 0.3069

17 0.8636 0.8294 0.3817 0.5430

18 0.8724 0.8029 0.3534 0.7257

19 0.8758 0.8666 0.3523 0.3760

Gambar 2. Confusion Matrix Model

https://crossmark.crossref.org/dialog/?doi=10.14710/jtsiskom.2022.xxxxx&domain=pdf&date_stamp=2022-01-31

Available at https://jtsiskom.undip.ac.id (3 October 2022)
DOI:10.14710/jtsiskom.2022.xxxxx

Jurnal Teknologi dan Sistem Komputer, 10(4), 2022, 1-10

Copyright ©2021, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

In details, labels 0-7 are the representations of the

classes. Label 0 represents the intersection class, with 70

correctly predicted data. Label 1 represents the dead end

class, with 70 correctly predicted data. Label 2 represents

the finish zone, with 70 correctly predicted data. Label 3

representing the start zone class, with 70 correctly

predicted data. Label 4 represents the straight path class,

with 70 correctly predicted data. Label 5 represents the

T-junction class, with 62 correctly predicted data. The

remaining 8 incorrect prediction recognize the T-junction

as a dead end. Label 6 represents the left turn class, with

70 correctly predicted data. Lastly, label 7 represents the

right turn class, with 70 correctly predicted data. Based

on the results mentioned above, this model is sufficient

to solve the maze despite being the first research

employing convolutional neural network to help solve

the maze. This affirms that the convolutional neural

network is a powerful tool in image classification tasks;

therefore, contribute its popularity in robotic applications

[25].

Table 5. Model report

Table 5 shows the precision, recall, and F1-score

which is in agreement with the training results in Table

4. In this condition, the quality of the recall metric

becomes a reference for concluding the quality of the

model. In determining the motion of the robot while

solving the maze, the False Negative value becomes

critical as it indicates the robot’s incapability to

undertake the appropriate commands. As in the condition

that the robot must do a U-Turn when it encounters a dead

end, the robot may not do a U-Turn and cause failure in

solving the maze if the number of False Negative is

considerably high [26]. Throughout the classification

process, the computational time is 50 ms for each video

images frame.

 C. Maze solver experiment

The robot, with a Jetson Nano developer kit, runs the

CNN model that is used to determine the motion of each

wheel. The robot’s response to the classification results

gives the appropriate motor motion, as shown in Table 6.

Table 6. Motor motion

The results of the motor motion show results that are

in accordance with the results of the classification carried

out by the model with an overall success rate of 100%.

For example, if the robot detects an intersection ahead,

then the robot turns right by rotating the left motor

forward and stopping the right motor, as explained in

[27]. The robot continues to navigate until finding the

‘finish zone’. In this condition, both motor stops and the

program is terminated.

However, the testing of CNN model on robot was

carried out indirectly by using the recorded video images.

This is because the video images reading process using

Python on the Jetson Nano developer kit experienced a

decrease in the frame rate to as low as 2 frames per

second, which causes the robot’s motion does not work

properly in real-time capture and cause the robot not able

to fully circle around the maze. To overcome this

limitation, some considerations must be taken into

account, such as mini-computer specification, AI model

computational load, and proper bit rates section.

IV. CONCLUSION

Convolutional neural network works properly for a

maze solving robot to classify a variety of obstacles. The

architecture of the convolutional neural network plays a

critical role in obtaining a satisfactory accuracy. In this

study, the selected architecture consists of four

convolution layers, three pooling layers, and three fully-

connected layers. The results show that accuracy reaches

82.41% for training and 90.52% for validation.

Meanwhile, the testing accuracy shows that all classes are

correctly predicted, except for T-junction with accuracy

of 90%. In the maze solving experiment, the video

images reading process is deteriorated due to frame rate

decline. This leads to some delays in the real-time image

capture.

Figure 6. Confusion matrix

Class Precision Recall F1-Score

Intersection 1.00 1.00 1.00

Dead End 0.90 1.00 0.95

Finish Zone
1.00 1.00 1.00

Start Zone 1.00 1.00 1.00

Straight Path
1.00 1.00 1.00

T-Junction 1.00 0.89 0.94

Left Turn 1.00 1.00 1.00

Right Turn 1.00 1.00 1.00

Classification

Result

Motor Output Success

Rate (%) Left Right

Intersection Forward Stop 100

Dead End Forward Backward 100

Finish Zone Stop Stop 100

Start Zone Forward Backward 100

Straight Path Forward Forward 100

T-Junction Forward Stop 100

Left Turn Stop Forward 100

Right Turn Forward Stop 100

https://crossmark.crossref.org/dialog/?doi=10.14710/jtsiskom.2022.xxxxx&domain=pdf&date_stamp=2022-01-31

Available at https://jtsiskom.undip.ac.id (3 October 2022)
DOI:10.14710/jtsiskom.2022.xxxxx

Jurnal Teknologi dan Sistem Komputer, 10(4), 2022, 1-10

Copyright ©2021, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

ACKNOWLEDGEMENT

The authors would like to thank Satya Wacana

Christian University for supporting this research under

research grant no. 189/Pen./Rek./6/V/2021.

REFERENCES

[1] M. Jogin, Mohana, M. S. Madhulika, G. D. Divya,

R. K. Meghana and S. Apoorva, "Feature Extraction

Using Convolution Neural Networks (CNN) and

Deep Learning," in 2018 3rd IEEE International

Conference on Recent Trends in Electronics,

Information & Communication Technology

(RTEICT), Bangalore, 2018, pp. 2319-2323, doi:

10.1109/RTEICT42901.2018.9012507.

[2] H. C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I.

Nogues, J. Yao, D. Mollura, and R. M. Summers,

“Deep Convolutional Neural Networks for

Computer-Aided Detection: CNN Architectures,

Dataset Characteristics and Transfer Learning,”

IEEE Transactions On Medical Imaging, vol. 35,

No.5, pp. 1-15, May 2016.

[3] Z. Wang, H. Li, X. Zhang, “Construction Waste

Recycling Robot For Nails And Screws: Computer

Vision Technology And Neural Network

Approach”, Automation in Construction, vol. 97,

pp. 220-228, Hongkong, 2019, ISSN 0926-5805,

https://doi.org/10.1016/j.autcon.2018.11.009.

[4] D. A. Alghmgham, G. Latif, J. Alghazo, and L.

Alzubaidi, “Autonomous Traffic Sign (ATSR)

Detection and Recognition Using Deep CNN,” in

Procedia Computer Science, vol. 163, pp. 266-274,

2019. ISSN 1877-0509,

https://doi.org/10.1016/j.procs.2019.12.108.

[5] B. Ko, H. J. Choi, C. Hong, J. H. Kim, O. C. Kwon,

and C. D. Yoo, "Neural Network-Based

Autonomous Navigation For A Homecare Mobile

Robot,” in IEEE International Conference on Big

Data and Smart Computing (BigComp), pp. 403–

406, Jeju, 2017, doi:

10.1109/BIGCOMP.2017.7881744.

[6] Kocić, Jelena, N. Jovičić, and V. Drndarević. "An

End-To-End Deep Neural Network for

Autonomous Driving Designed for Embedded

Automotive Platforms." Sensors, vol. 19, no. 9,

2019.

[7] D. L. Z. Astuti and Samsuryadi “Kajian Pengenalan

Ekspresi Wajah Menggunakan Metode PCA Dan

CNN,” in Prosiding Annual Research, vol. 4, no. 1,

pp. 293-297, 2018.

[8] A. Chavda, J. Dsouza, S. Badgujar and A. Damani,

"Multi-Stage CNN Architecture for Face Mask

Detection," in 6th International Conference for

Convergence in Technology (I2CT), Maharashtra,

pp. 1-8, 2021. doi:

10.1109/I2CT51068.2021.9418207.

[9] A. Ulhaq, J. Born, A. Khan, D. P. S. Gomes, S.

Chakraborty and M. Paul, "COVID-19 Control by

Computer Vision Approaches: A Survey," IEEE

Access, vol. 8, pp. 179437-179456, 2020, doi:

10.1109/ACCESS.2020.3027685.

[10] Almabdy, Soad, and Lamiaa Elrefaei. "Deep

Convolutional Neural Network-Based Approaches

for Face Recognition," Applied Sciences, vol. 9, no.

20, pp. 1-21, 2019.

[11] Permana, D. Ajie. “Pendeteksi Wajah Bermasker

Menggunakan Metode Faster R-CNN,”

Dissertation Universitas Komputer Indonesia,

2021.

[12] Li, Yang, et al. "Face Recognition Based on

Recurrent Regression Neural

Network." Neurocomputing, vol. 297, pp. 50-58,

2018.

[13] A. Zarkasi, H. Ubaya, C. D. Amanda, and R.

Firsandaya, “Implementation of RAM Based

Neural Networks On Maze Mapping Algorithms for

Wall Follower Robot,” Journal of Physics:

Conference Series, vol. 1196, no. 1, pp. 1-6, 2019,

doi: 10.1088/1742-6596/1196/1/012043.

[14] A. Rodriguez-Tirado, D. Magallan-Ramirez, J. D.

Martinez-Aguilar, C. Francisco Moreno-Garcia, D.

Balderas and E. Lopez-Caudana, "A Pipeline

Framework for Robot Maze Navigation Using

Computer Vision, Path Planning and

Communication Protocols," 2020 13th

International Conference on Developments in

eSystems Engineering (DeSE), pp. 152-157, 2020.

doi: 10.1109/DeSE51703.2020.9450731.
[15] Rostami, S. M. Hosseini, et al. "Obstacle Avoidance

of Mobile Robots Using Modified Artificial

Potential Field Algorithm," EURASIP Journal on

Wireless Communications and Networking, vol. 70,

pp. 1-19, 2019.

[16] O. Khatib, "Real-Time Obstacle Avoidance for

Manipulators and Mobile Robots," Proceedings.

1985 IEEE International Conference on Robotics

and Automation, pp. 500-505, 1985, doi:

10.1109/ROBOT.1985.1087247.
[17] S. Suryanarayana, V. Akhila, “Autonomous Maze

Solving Robot Using Arduino”, International

Journal of Advanced Research in Engineering and

Technology (IJARET), vol. 12, no. 3, pp. 595-603,

2021, doi: 10.3421/IJARET.12.3.2021.054

[18] A. Sabril and N. M. Abdal, “Perbandingan Waktu

Tempuh Mobile Robot Dalam Arena Labirin

Dengan Algoritma Tangan Kiri Dan Algoritma

Tangan Kanan,” Jurnal Media Elektrik, vol. 17, no.

3, 2020. p-ISSN: 1907-1728, e-ISSN: 2721-9100.

[19] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner,

"Gradient-Based Learning Applied to Document

Recognition," in Proceedings of the IEEE, vol. 86,

no. 11, pp. 2278-2324, Nov. 1998, doi:

10.1109/5.726791.
[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S.

Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein et al., “Imagenet Large Scale Visual

Recognition Challenge,” International Journal of

Computer Vision, vol. 115, no. 3, pp. 211–252,

2015.

https://crossmark.crossref.org/dialog/?doi=10.14710/jtsiskom.2022.xxxxx&domain=pdf&date_stamp=2022-01-31
https://doi.org/10.1016/j.autcon.2018.11.009

Available at https://jtsiskom.undip.ac.id (3 October 2022)
DOI:10.14710/jtsiskom.2022.xxxxx

Jurnal Teknologi dan Sistem Komputer, 10(4), 2022, 1-10

Copyright ©2021, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

[21] S. Salman and X. Liu, “Overfitting Mechanism and

Avoidance In Deep Neural Networks,” arXiv

preprint 2019, arXiv: 1901.06566.
[22] Q. Xu, M. Zhang, Z. Gu, “Overfitting Remedy by

Sparsifying Regularization on Fully-Connected

Layers of CNNs,” Neurocomputing, vol. 328, pp.

69-74, 2019, doi:

https://doi.org/10.1016/j.neucom.2018.03.080.
[23] X. Ying, “An Overview of Overfitting and its

Solutions,” Journal of Physics: Conference Series,

vol. 1168, no. 2, 2022.
[24] Z. Guoping, “On the confusion matrix in credit

scoring and its analytical properties,”

Communications in Statistics - Theory and

Methods, vol 49, no. 9, 2020.

https://doi.org/10.1080/03610926.2019.1568485

[25] R. Wassem and W. Zenghui, “Deep Convolutional

Neural Networks for Image Classification: A

Comprehensive Review,” Neural Computation,

vol. 29, no. 9, 2017.

[26] S. Ahmad, S. U. Ansari, U. Haider, K. Javed, J. U.

Rahman, and S. Anwar, “Confusion matrix-based

modularity induction into pretrained

CNN,” Multimedia Tools and Applications, vol.

81, pp. 23311 – 23337, 2022.

https://doi.org/10.1007/s11042-022-12331-2

[27] S. Konduri, E. O. C. Torres, P. R. Pagilla,

“Dynamics and Control of a Differential Drive

Robot With Wheel Slip: Application to

Coordination of Multiple Robots,” Journal of

Dynamic Systems, Measurement, and Control, vol.

139, no. 1, 2017.

©2021. This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution-ShareAlike 4.0 International License.

https://crossmark.crossref.org/dialog/?doi=10.14710/jtsiskom.2022.xxxxx&domain=pdf&date_stamp=2022-01-31
https://doi.org/10.1016/j.neucom.2018.03.080
https://doi.org/10.1080/03610926.2019.1568485
https://doi.org/10.1007/s11042-022-12331-2
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

