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Abstract –Traditionally, the maze solving robots employ 

ultrasonic sensors to detect the maze walls around the 

robot. However, this approach only perceives the 

presence of the objects without recognizing the type of 

these objects. Therefore, computer vision has become 

more popular for classification purpose in robot 

applications. In this study, a maze solving robot is 

equipped with a camera to recognize the types of 

obstacles in a maze. The types of obstacles are classified 

as: intersection, dead end, T junction, finish zone, start 

zone, straight path, T–junction, left turn, and right turn. 

Convolutional neural network is employed to train the 

robot using a total of 24,000 images to recognize the 

obstacles. Jetson Nano development kit is used to 

implement the trained model and navigate the robot. 

The results shows an average training accuracy of 82% 

with a training time of 30 minutes 15 seconds. As for 

the testing, the lowest accuracy is 90% for the T-

junction with the computational time being 500 

milliseconds for each frame. Therefore, the 

convolutional neural network is adequate to serve as 

classifier and navigate a maze solving robot. 

 

Keywords – convolutional neural network; maze; 

navigation; classification; robot  

I. INTRODUCTION 

Over the last few decades, the interest in deep neural 

network has soared among researchers as it is able to 

tackle with a large number of data. The applications of 

deep neural network encompass a range of fields by 

creating various artificial intelligence models, one of 

which is an image detection engine using a deep 

convolutional neural network (CNN). Basically, deep 

convolutional neural network works by extracting 

features in digital images. These key features of an image 

characterize a specific object that can be used to classify 

and discriminate against other objects. Several pre-

processing stages such as image normalization and image 

segmentation are essential for the feature extraction 

process. The result of feature extraction is subsequently 

used for image classification or detection [1]. 

Deep neural networks play a variety of roles in many 

fields. In the health sector, deep convolutional neural 

networks are used to detect lungs disease [2], detect mask 

users as a preemptive measure against the spread of 

Covid-19 [3][4], and to recycle plastic waste such as nails 

and screws [3]. In the automotive field, deep 

convolutional neural networks are applied to recognize 

traffic signs and also responsible in the navigation of 

autonomous cars [4] - [6]. In addition, other applications 

such as human facial expression detection [7] and face 

detection for security can also take advantage of deep 

convolutional neural network [8] - [12].  

In robotic applications, neural network is widely used 

for maze mapping application [13] - [16]. As for the robot 

navigation, maze robots traditionally employ ultrasonic 

sensors to detect the circumstances around the robot - 

[17] and apply the right-handed algorithm to determine 

the robot's motion [18]. However, ultrasonic sensors has 

shortcomings as it can not recognize the type of objects 

ahead; therefore, difficult to visualize the grand picture 

of the maze. In this study, an artificial neural network is 

used to help robots navigate in a maze. The dataset was 

captured directly using OpenCV with the amount of 

24,000 images data. By utilizing convolution operations 

in digital image data, the robot can learn from the training 

data to recognize the types of obstacles being faced by 

the robot. Convolutional neural network extracts the 

characteristics of digital images through a multitude of 

hidden layers that are built so as to find a network model 

that is considered appropriate. Once the trained model is 

obtained, the robot is not only able to navigate but able to 

recognize the types of obstacles in the maze.  

 

II. RESEARCH METHODS 

A. Experimental stages 

Figure 1 shows the workflow used in this study. A 

webcam is mounted on the robot to capture a set of 

images. To capture the image, each frame in the video 

recording is separately taken until collecting 3000 image 

data for each class. The capture is governed by Jetson 

Nano by means of program listings in the OpenCV 

library. The image dataset is grouped into 8 classes, 

namely intersection, dead end, T junction, finish zone, 

start zone, straight path, T–junction, left turn, and right 

turn. Each class contains 2500 training data, 430 

validation data, and 70 test data. In digital image pre-

processing, the original digital image is rescaled from 

1080×720 pixels to 224×84 pixels. Subsequently, the 
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image is converted from multiple channels to single 

channel by generating the grayscale images. Then, the 

collected image data are randomly selected and grouped 

as training data and validation data which will then be 

used for training in convolutional neural networks. The 

network model is composed by a multitude of hidden 

layers and functions. Some parameters within the 

network are finely tuned to yield the best outcome, i.e. 

accuracy. Finally, the trained network model is tested to 

see if the robot can correctly classify the obstacles. 

 

Figure 1. Research workflow 

The performance assessment is carried out by running 

the robot along the maze. The network model is embed-

ded in the Nvidia Jetson Nano developer kit and equipped 

with a 720p30fps webcam. The test is carried out using 

70 images for each class which are not previously used 

for training and validation. The detection results are then 

used for assessing the correctness of the robot's motion. 

The test results are expected that the robot is able to clas-

sify with an accuracy of 80% and move correctly based 

on the classification results. 

B. The hardware 

The robot is constructed in three levels and equipped 

with two wheels for the locomotion drives, as shown in 

Figure 2 and 3. The robot is able to traverse according to 

the image classifier program. All commands are 

processed in the Nvidia Jetson Nano developer kit which 

has a Quad-core ARM A57 processor with a clock speed 

of 1.43 GHz, a 128-core Maxwell GPU, RAM of 4 GB, 

and internal storage of 64 GB. In addition, the robot is 

also equipped with a Logitech C92 webcam, gearbox, Li-

Po batteries, motor drivers, and voltage regulators. 

Jetson Nano developer kit is employed to perform the 

image classification. The outcome of this classification is 

used to determine the robot's motion using Python3 

programming. The image classification process begins 

when the robot is turned on and start capturing the image. 

The predetermined initial position is always located in 

one spot, i.e. the starting zone. Then, the convolutional 

neural network classifies the obstacles with respect to the 

captured image in front of robot. Having received the 

classification results, the robot determines the motion of 

each wheel to steer the robot accordingly, as shown in 

Table 1. In this study, the robot applies the right-hand 

rule algorithm, meaning that it prioritizes turning right 

whenever it encounters two or more alternatives to pass 

through, such as intersections and T-junctions. The robot 

repeats the commands and keeps moving until it reaches 

the finish zone and stops. 

 
Figure 2. Front view of the robot 

 

 
Figure 3. Back view of the robot 

 

To conduct the experiment, a 120cm×240cm maze 

was built from 1-cm thick plywood with white walls and 

black floor, as depicted in Figure 4. The maze comprises 

of eight types of obstacles that will be learned by the 

robot as mentioned above. The design of the maze was 

Image Dataset 

Dataset Split 

(Training Data, Validation Data) 

Image Preprocessing 

(Rescale, Width Shift, Height Shift, Zoom Range) 

Hidden Layer Modeling 

(Convolution Layer, Activation Function, Pooling 

Layer, Dropout Layer, Flatten Layer, Fully 
Connected Layer) 

Model Compiling 

(Loss Function, Optimizer) 

Model Training 

(Epochs, Batch Size, Callbacks) 

Model Testing 
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inspired by the realistic road, with white markers that can 

be a feature used in the neural network. 

 

Table 1. Instruction table 

 

Figure 4. The maze 

C. The dataset 

The data was taken using a 1080p webcam and 

OpenCV library. The resulting images are in grayscale 

with dimension of 224×84×1 pixel. The complete dataset 

is as much as 24,000 and divided into 8 classes for each 

training and validation data, as shown in Table 2. Figure 

5 shows the sample of image data for each class used for 

training and validating. The variation of images used in 

model training is constituted from a range of image point 

of views or different angle perspective captured by the 

camera. These images might be taken from the same 

video recording but at different sampling instants, some 

of which are blurry.  

 

 

 

 

 

Table 2. Number of data for each class 

 
 

   
           (a)                         (b)                         (c) 

   
           (d)                         (e)                         (f) 

                      
                      (g)                                  (h) 

Figure 5. Dataset images: (a) intersection, (b) dead end, 

(c) finish zone, (d) start zone, (e) straight path, (f) T-

junction, (g) left turn, (h) right turn. 

D. Convolutional neural network modeling 

Prior to the training phase, the image is split into 

training and validation data. At this stage, the data is 

randomly split using features in the Tensorflow 

framework-Keras API with a ratio of 85:15. This split 

ratio provides 2,500 and 430 data for training and 

validation, respectively. Then, these split data proceed 

with the augmentation process, which includes rescaling, 

width shifting, height shifting, and zoom range adjusting. 

These augmentations aims to make the data more flexible 

during training. 

 

 

 

 

 

 

 

 

 

 

 

 

Classification 

Result 

Motor Output 

Left Right 

Intersection  Forward Stop 

Dead End Forward Backward 

Finish Zone Stop Stop 

Start Zone Forward Backward 

Straight Path Forward Forward 

T-Junction Forward Stop 

Left Turn Stop Forward 

Right Turn Forward Stop 

 

 

No 
Classes 

Name 

Number of Images 

Training Validation Testing 

1 Intersection 2500 430 70 

2 Dead End 2500 430 70 

3 Finish Zone 2500 430 70 

4 Start Zone 2500 430 70 

5 Straight Path 2500 430 70 

6 T-Junction 2500 430 70 

7 Left Turn 2500 430 70 

8 Right Turn 2500 430 70 
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Table 3. Convolutional neural network architecture 

 
The architecture the convolutional neural network 

was selected by adopting several previously used 

architectures such as LeNet, AlexNet, ZF Net [19][20]. 

The first layer is convolution layer with 224×84 

grayscale image data input. This layer uses a kernel size 

of 3×3, 16 channels, and a rectified linear unit (ReLu) 

activation function. The second and third layer employ 

the same layer model as before, and then followed by 

maxpooling layers with a filter size or kernel size of 2×2. 

The subsequent three layers use the same model with 32 

channels. For the next three layers, 64 channels are used, 

and then a flatten layer is utilized to convert the data 

dimension to 1×28800. The final layer is a fully-

connected layer that will be used for prediction and 

classification. The full architecture of the convolutional 

neural network is shown in Table 3. The model training 

process uses a total of 1,370,676 parameters, equipped 

with cross-entropy as the loss function and Adam 

function as the optimization algorithm. 

III. RESULT AND DISCUSSION 

To demonstrate the performance, a number of 

indicators are used to assess the results. First, the training 

and validation accuracy are measured during the model 

learning stage. Then the trained network model is tested 

by applying a testing dataset not previously used during 

the training stage. The size of testing data is 70 images 

for each class. The result of model testing is represented 

in the form of an evaluation matrix. Finally, an 

experiment is done by demonstrating the maze solving 

robot in a real maze. 

A. Model training 

The network model training is based on the hidden 

layer architecture as explained in Table 3. The training 

process run iteratively, with 30 epochs being the upper 

bound of the training period. The value of the accuracy 

of the training results and the validation of each epoch is 

directly proportional to the quality of the model. 

Meanwhile, the loss indicates how well the model fits the 

training data or new data. 

In this study, we take advantage of the early stopping 

feature in keras.callbacks with a patience value of 6. This 

aims to take the best value and terminate the training 

process if the training result does not improve after the 

next 6 steps. This is also effective to avoid network 

overfitting [21]-[23]. 

 

 
Table 4 implies that the best model training is at 

epoch 13, with a training accuracy of 82.41% and 

validation accuracy of 90.52%. This model is the best 

model because the validation loss is the parameter 

required for the early stopping feature by keras.callbacks. 

If the validation loss does not improve for the next 6 

epochs, then the training process terminates. As we can 

see in Table 4, the validation loss of epoch 14 – 19 still 

greater than that of epoch 13. As a result, the training 

process stops at epoch 19 even though the maximum 

epoch is 30. 

B. Model testing 

The confusion matrix in Figure 6 states the quality of 

the model that allows visualization of the performance of 

the Convolutional Neural Network. The number of 

testing data for each class is 70, giving a total of 560 

testing dataset. The quality of model is in accordance 

with the accuracy results in Table 4. The result 

representation is composed based on the confusion 

matrix variant 3 as explained in [24].  

No    Layer Output Shape 

1 Convolution  (None, 222, 82, 6) 

2 Average Pooling (None, 111, 41, 6) 

3 Convolution (None, 109, 39, 16) 

4 Average Pooling (None, 54, 19, 16) 

5 Convolution (None, 52, 17, 32) 

6 Convolution (None, 50, 15, 32) 

7 Average Pooling (None, 25, 7, 32) 

8 Flatten (None, 5600) 

9 Dense (None, 120) 

10 Dense (None, 84) 

11 Dropout  (None, 84) 

12 Dense (None, 8) 

 

Table 4. Model training process 

Epoch 
Accuracy Loss 

Train Val. Train Val. 

1 0.3058 0.5384 1.7311 1.1263 

2   0.5078 0.5253 1.2420 1.0416 

3 0.5814 0.6599 1.0440 0.9691 

4 0.6243 0.7994 0.9452 0.7203 

5 0.6683 0.9119 0.8470 0.5213 

6 0.7061 0.9087 0.7715 0.5029 

7 0.7345 0.9174 0.7046 0.3578 

8 0.7522 0.8128 0.6608 0.5025 

9 0.7742 0.8788 0.6139 0.3414 

10 0.7878 0.9276 0.5777 0.2810 

11 0.8035 0.8407 0.5367 0.4696 

12 0.7213 0.9061 0.4995 0.2676 

13 0.8241 0.9052 0.4781 0.2504 

14 0.8339 0.8273 0.4591 0.5457 

15 0.8467 0.8724 0.4229 0.3141 

16 0.8560 0.8799 0.3993 0.3069 

17 0.8636 0.8294 0.3817 0.5430 

18 0.8724 0.8029 0.3534 0.7257 

19 0.8758 0.8666 0.3523 0.3760 

   

 
Gambar 2. Confusion Matrix Model 
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In details, labels 0-7 are the representations of the 

classes. Label 0 represents the intersection class, with 70 

correctly predicted data. Label 1 represents the dead end 

class, with 70 correctly predicted data. Label 2 represents 

the finish zone, with 70 correctly predicted data. Label 3 

representing the start zone class, with 70 correctly 

predicted data. Label 4 represents the straight path class, 

with 70 correctly predicted data. Label 5 represents the 

T-junction class, with 62 correctly predicted data. The 

remaining 8 incorrect prediction recognize the T-junction 

as a dead end. Label 6 represents the left turn class, with 

70 correctly predicted data. Lastly, label 7 represents the 

right turn class, with 70 correctly predicted data. Based 

on the results mentioned above, this model is sufficient 

to solve the maze despite being the first research 

employing convolutional neural network to help solve 

the maze. This affirms that the convolutional neural 

network is a powerful tool in image classification tasks; 

therefore, contribute its popularity in robotic applications 

[25]. 

 

Table 5. Model report 

 
Table 5 shows the precision, recall, and F1-score 

which is in agreement with the training results in Table 

4. In this condition, the quality of the recall metric 

becomes a reference for concluding the quality of the 

model. In determining the motion of the robot while 

solving the maze, the False Negative value becomes 

critical as it indicates the robot’s incapability to 

undertake the appropriate commands. As in the condition 

that the robot must do a U-Turn when it encounters a dead 

end, the robot may not do a U-Turn and cause failure in 

solving the maze if the number of False Negative is 

considerably high [26]. Throughout the classification 

process, the computational time is 50 ms for each video 

images frame. 

  C. Maze solver experiment 

The robot, with a Jetson Nano developer kit, runs the 

CNN model that is used to determine the motion of each 

wheel. The robot’s response to the classification results 

gives the appropriate motor motion, as shown in Table 6.  

 

Table 6. Motor motion 

 
The results of the motor motion show results that are 

in accordance with the results of the classification carried 

out by the model with an overall success rate of 100%. 

For example, if the robot detects an intersection ahead, 

then the robot turns right by rotating the left motor 

forward and stopping the right motor, as explained in 

[27]. The robot continues to navigate until finding the 

‘finish zone’. In this condition, both motor stops and the 

program is terminated. 

However, the testing of CNN model on robot was 

carried out indirectly by using the recorded video images. 

This is because the video images reading process using 

Python on the Jetson Nano developer kit experienced a 

decrease in the frame rate to as low as 2 frames per 

second, which causes the robot’s motion does not work 

properly in real-time capture and cause the robot not able 

to fully circle around the maze. To overcome this 

limitation, some considerations must be taken into 

account, such as mini-computer specification, AI model 

computational load, and proper bit rates section. 

IV. CONCLUSION 

Convolutional neural network works properly for a 

maze solving robot to classify a variety of obstacles. The 

architecture of the convolutional neural network plays a 

critical role in obtaining a satisfactory accuracy. In this 

study, the selected architecture consists of four 

convolution layers, three pooling layers, and three fully-

connected layers. The results show that accuracy reaches 

82.41% for training and 90.52% for validation. 

Meanwhile, the testing accuracy shows that all classes are 

correctly predicted, except for T-junction with accuracy 

of 90%. In the maze solving experiment, the video 

images reading process is deteriorated due to frame rate 

decline. This leads to some delays in the real-time image 

capture.  

 
Figure 6. Confusion matrix 

 

Class Precision Recall F1-Score 

Intersection 1.00 1.00 1.00 

Dead End 0.90 1.00 0.95 

Finish Zone 
1.00 1.00 1.00 

Start Zone 1.00 1.00 1.00 

Straight Path 
1.00 1.00 1.00 

T-Junction 1.00 0.89 0.94 

Left Turn 1.00 1.00 1.00 

Right Turn 1.00 1.00 1.00 

  

Classification 

Result 

Motor Output Success 

Rate (%) Left Right 

Intersection  Forward Stop 100 

Dead End Forward Backward 100 

Finish Zone Stop Stop 100 

Start Zone Forward Backward 100 

Straight Path Forward Forward 100 

T-Junction Forward Stop 100 

Left Turn Stop Forward 100 

Right Turn Forward Stop 100 
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