Peningkatan Akurasi Klasifikasi Tingkat Penguasaan Materi Bahan Ajar Menggunakan Jaringan Syaraf Tiruan Dan Algoritma Genetika

DOI: https://doi.org/10.14710/jtsiskom.5.4.2017.147-152
Copyright (c) 2017 Jurnal Teknologi dan Sistem Komputer

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 2017-09-04
Published: 2017-10-26
Section: Articles
Fulltext PDF Tell your colleagues Email the author

Decision support systems can be applied to perform a lecturer's performance assessment. This research aims to develop a hybrid model using the artificial neural network (ANN) and genetic algorithm (GA) that can be implemented and used as a model of decision support data analysis that produce better accuracy, specifically to assess the lecturer's comprehension of their teaching materials. The use of GA in determining the ANN parameter has increased the accuracy from 85.36% to 85.73%. The training cycle is also reduced to 624 from 1000. The use of this JST-GA model can be applied to provide a better lecture's performance assessment system.

Sistem pendukung keputusan dapat diterapkan untuk melakukan penilaian kinerja seorang dosen. Penelitian ini bertujuan untuk mengembangkan model hibrid menggunakan jaringan syaraf tiruan (JST) dan algoritma genetika (GA) yang dapat diimplementasikan dan digunakan sebagai model analisis data pendukung keputusan yang menghasilkan akurasi lebih baik, khususnya untuk menilai penguasaan dosen terhadap materi ajar. Penggunaan GA dalam menentukan nilai parameter JST mampu meningkatkan akurasi pengukuran dari 85.36% menjadi 85.73%. Siklus pelatihannya juga berkurang menjadi 624 dari 1000. Penggunaan model JST-GA ini dapat dilakukan ke sistem penilaian kinerja dosen dengan tingkat akurasi yang lebih baik.

Keywords

Jaringan syaraf tiruan; algoritma genetika; penilaian kinerja dosen

  1. Oman Somantri  Orcid
    Program Studi Teknik Informatika, Politeknik Harapan Bersama Tegal, Indonesia
  2. Slamet Wiyono 
    Program Studi Teknik Informatika, Politeknik Harapan Bersama Tegal, Indonesia
  1. Ruslan, “Kepuasan mahasiswa terhadap kinerja dosen,” Jurnal Ilmu Pendidikan, vol. 17, no. Oktober, pp. 230–237, 2016.
  2. Sunyoto and A. Miftahudin, “Mengukur Kepuasan Mahasiswa Berdasarkan Kinerja Dosen Dalam Proses Perkuliahan (Studi Empiris di Universitas Muhammadiyah Purwokerto),” Sainteks, vol. 11, no. 2, pp. 36–55, 2014.
  3. M. Chalaris, S. Gritzalis, M. Maragoudakis, C. Sgouropoulou, and A. Tsolakidis, “Improving Quality of Educational Processes Providing New Knowledge Using Data Mining Techniques,” Procedia - Social and Behavioral Sciences, vol. 147, pp. 390–397, 2014.
  4. L. Atika, “Sistem Penunjang Keputusan Penilaian Kinerja Pemilihan Dosen Berprestasi Menggunakan Metode AHP,” J. Imiah Matrik, vol. 12, no. 3, pp. 1–10, 2010.
  5. E. N. Wahyudi and A. Jananto, “Final Report Penilaian Kinerja Dosen oleh Mahasiswa pada Satu Periode Tahun Akademik menggunakan Teknik Klustering (Studi Kasus : Universitas Stikubank Semarang),” Dinamik-Jurnal Teknologi Informasi, vol. 18, no. 2, pp. 101–111, 2013.
  6. A. Izzuddin, “Optimasi Cluster pada Algoritma K-Means dengan Reduksi Dimensi Dataset Menggunakan Principal Component Analysis untuk Pemetaan Kinerja Dosen,” Energy, vol. 5, no. 2, pp. 41–46, 2015.
  7. R. S. Zebulum, M. Vellasco, K. Guedes, and M. A. Pacheco, “Short-Term Load Forecasting Using Neural Nets,” in International Workshop on Artificial Neural Networks, Springer, Berlin, Heidelberg, 1995, pp. 1001-1008.
  8. R. E. Abdel-Aal and A. Z. Al-Garni, “Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis,” Energy, vol. 22, no. 11, pp. 1059–169, 1997.
  9. T. Park, J.-H. Lee, and B. Choi, “Optimization for Artificial Neural Network with Adaptive inertial weight of particle swarm optimization,” in the 2009 8th IEEE Int. Conf. Cogn. Informatics, 2009, pp. 481–485.
  10. G. Wu, Y. Ren, Y. Li, H. Kwak, and S. Jang, “Research on Parameter Optimization of Neural Network,” International Journal of Hybrid Information Technology, vol. 2, no. 1, pp. 81–90, 2009.
  11. R. L. Haupt and S. E. Haupt, Algorithms Practical Genetic Algorithms. John Wiley & Sons, 2004.
  12. M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” Eeccis, vol. 7, no. 1, pp. 59–64, 2013.
  13. A. Yuliana and D. B. Pratomo, “Algoritma Decision Tree (C4.5) untuk Memprediksi Kepuasan Mahasiswa Terhadap Kinerja Dosen Politeknik TEDC Bandung,” Semnasinotek, vol. 1, no. 1, pp. 365–372, 2017.
  14. S. Lestari and A. Suryadi, “Model Klasifikasi Kinerja Dan Seleksidosen Berprestasi Dengan Algoritma C. 45,” in Prosiding Seminar Bisnis & Teknologi, 2014, pp. 15–16.