skip to main content

Prediksi dinamika pandemi di Pulau Jawa menggunakan metode Moving Average dan Knowledge Growing System

Pandemic dynamics prediction in Java using the Moving Average and the Knowledge Growing System methods

1Master Program in Electrical Engineering, Politeknik Negeri Malang. Jl. Soekarno Hatta No.9, Malang, Jawa Timur 65141, Indonesia

2Faculty of Defense Technology, Universitas Pertahanan. Integrated Peace and Security Center, Sentul, Bogor, Jawa Barat 10430, Indonesia

Received: 10 Jun 2020; Revised: 18 Oct 2020; Accepted: 24 Oct 2020; Published: 31 Jan 2021; Available online: 27 Oct 2020.
Open Access Copyright (c) 2021 The Authors. Published by Department of Computer Engineering, Universitas Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This study aims to analyze the comparative performance of pandemic dynamics prediction methods on the island of Java, based on data from March to May 2020 covering the provinces of DKI Jakarta, West Java, Central Java, DI Yogyakarta, and East Java. The prediction uses Knowledge Growing System (KGS) and time series models, namely Single Moving Average (SMA) and Exponential Moving Average (EMA). Based on the Mean Absolute Percentage Error (MAPE) computational results, the EMA method produces a lower error rate than the SMA method with 47.94 % on average. The KGS prediction with a Degree of Certainty (DoC) produced a trend analysis that the pandemic dynamics in DKI Jakarta province will decrease gradually if the current policy is still implemented. Whereas in the other provinces, the KGS predicted the pandemic dynamics trends will still increase.

Note: This article has supplementary file(s).

Fulltext View|Download |  Data Set
Dataset
Subject Data ODP, PDP, Sembuh, Meninggal
Type Data Set
  Download (181KB)    Indexing metadata
Keywords: knowledge growing system; moving average; pandemic; prediction; Covid-19
Funding: Politeknik Negeri Malang; Universitas Pertahanan

Article Metrics:

  1. A. Nurlifa and S. Kusumadewi, “Sistem peramalan jumlah penjualan menggunakan metode moving average pada Rumah Jilbab Zaky,” Jurnal INOVTEK Polbeng, vol. 2, no. 1, pp. 18-25, 2017. doi: 10.35314/isi.v2i1.112
  2. I. Iwan, H. Iviq, Eneng Rahayu, and A. Yulianto, “Analisa peramalan permintaan mobil Mitsubishi Xpander dengan tiga metode forecasting,” Cakrawala, vol. 18, no. 2, pp. 249–256, 2018. doi: 10.31294/jc.v18i2.4296
  3. A. Kumila, B. Sholihah, E. Evizia, N. Safitri, and S. Fitri, “Perbandingan metode moving average dan metode naïve dalam peramalan data kemiskinan,” Jurnal Teori dan Aplikasi Matematika, vol. 3, no. 1, pp. 65-73, 2019. doi: 10.31764/jtam.v3i1.764
  4. D. I. Sensuse, E. Cahyaningsih, and W. C. Wibowo, “Identifying knowledge management process of indonesian government human capital management using analytical hierarchy process and pearson correlation analysis,” Procedia Computer Science, vol. 72, no. 81, pp. 233–243, 2015. doi: 10.1016/j.procs.2015.12.136
  5. A. D. W. Sumari, A. S. Ahmad, A. I. Wuryandari, and J. Sembiring, “Strategic decision making based on A3S information-inferencing fusion method,” in International Conference on Electrical Engineering and Informatics, Bandung, Indonesia, Jul. 2011, pp. 1-6. doi: 10.1109/ICEEI.2011.6021518
  6. N. A. Azis, A. Widyotriatmo, A. D. W. Sumari, E. Juliastuti, and Y. Y. Nazaruddin, “Dynamic high-performance decision-making in air defense system operation,” in IEEE 6th Asian Conference on Defence Technology (ACDT), Bali, Indonesia, Nov. 2019, pp. 39–45. doi: 10.1109/ACDT47198.2019.9072897
  7. A. D. W. Sumari and A. S. Ahmad, “Multiagent collaborative computation to military operation planning and execution,” Prosiding Seminar Nasional Teknologi Informasi dan Kedirgantaraan, vol. 3, pp. AI72-82, 2017. doi: 10.28989/senatik.v3i0.104
  8. C. N. Babu and B. E. Reddy, “A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data,” Applied Soft Computing, vol. 23, pp. 27–38, 2014. doi: 10.1016/j.asoc.2014.05.028
  9. R. H. Martiadi, T. H. Pudjiantoro, and F. Renaldi, “Pembangunan perangkat lunak business intelligence di Dinas Perhubungan Kabupaten Bandung Barat,” Simetris: Jurnal Teknik Mesin, Elektro, dan Ilmu Komputer, vol. 8, no. 2, pp. 433-440, 2017. doi: 10.24176/simet.v8i2.1186
  10. R. Yanto, “Implementasi data mining estimasi ketersediaan lahan pembuangan sampah menggunakan algoritma simple linear regression,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 2, no. 1, pp. 361–366, 2018. doi: 10.29207/resti.v2i1.282
  11. S. D. Putra, A. D. W. Sumari, A. S. Ahmad, S. Sutikno, and Y. Kurniawan, “Cognitive artificial intelligence countermeasure for enhancing the security of big data hardware from power analysis attack,” In Fadlullah Z., Khan Pathan AS, (eds) “Combating security challenges in the age of big data,” Advanced Sciences and Technologies for Security Applications, Springer, Cham, 2020. doi: 10.1007/978-3-030-35642-2_4
  12. A. D. W Sumari, A. S. Ahmad, A. I. Wuryandari, and J. Sembiring, “Brain-inspired knowledge-growing system: towards a true cognitive agent,” International Journal of Computer Science and Artificial Intelligence, vol. 2, no. 1, pp. 26–36, 2012. doi: 10.5963/IJCSAI0201006
  13. D. Choi and M. Sababheh, “Inequalities related to the arithmetic, geometric and harmonic means,” Journal of Mathematical Inequalities, vol. 11, no. 1, pp. 1–16, 2017. doi: 10.7153/jmi-11-01
  14. L. M. Tanjung and A. Fahmi, “Perhitungan peramalan pengadaan obat menggunakan metode single exponential smoothing dan single moving average pada unit farmamin dinas kesehatan provinsi Jawa Tengah,” Joins, vol. 2, no. 2, pp. 234–243, 2017. doi: 10.33633/joins.v2i2.1680
  15. J. Huang and W. Zhou, “Re2EMA: regularized and reinitialized exponential moving average for target model update in object tracking,” Proceeding AAAI Conference on Artificial Intelligence, vol. 33, pp. 8457–8464, 2019. doi: 10.1609/aaai.v33i01.33018457
  16. S. R. D. Syahputra and S. Suharyono, “Peramalan penjualan jasa freight forwarding dengan metode single moving averages, exponential smoothing dan weighted moving averages (Studi kasus pada PT Anugerah Tangkas Transportindo, Jakarta),” Administrasi Bisnis, vol. 55, no. 2, pp. 113–121, 2018
  17. -, “Reproduction number Covid 19: Indonesia case study,” 2020. [Online]. Available: https://pamanapiq. com/2020/06/03/reproduction-number-covid-19-indonesia-case-study/. [Accessed: Jun. 9, 2020]
  18. -, “Kelayakan new normal: reproduction number secara realtime,” 2020. [Online]. Available: https://pamanapiq.com/2020/06/09/kelayakan-new-normal-reproduction-number-secara-realtime/. [Accessed: Jun. 9, 2020]
  19. B. Sulistyo and D. Mahayana, “Pemodelan multi skenario dan rekomendasi strategi pengendalian penyebaran virus corona di indonesia,” 2020, [Online]. Available: https://sharingvision.com/ pemodelan-multi-skenario-dan-rekomendasi-strategi-pengendalian-penyebaran-virus-corona-di-indonesia/. [Accessed: Jun. 9, 2020]
  20. A. D. W. Sumari and A. S. Ahmad, “Cognitive artificial intelligence: concept and applications for humankind”, in Intelligent Systems. IntechOpen, 2017. doi: 10.5772/intechopen.70018
  21. A. D. W. Sumari, C. O. Sereati, I. N. Syamsiana, M. N. Wibisono, R. Abdulharis, and D. H. P. Putra, “Cognitive artificial intelligence decision support system based on knowledge growing system,” International Journal of Advanced Science and Technology (IJAST), vol. 29, no. 7s, pp. 3734-3743, 2020

Last update:

No citation recorded.

Last update: 2021-09-19 16:30:56

No citation recorded.