- Andrew McGuire. (2015) The Essentials of Sustaining Agricultural Production. [Online]. Available: https://csanr.wsu.edu/essentials-of-sustaining-ag-production/
- J. G. A. Barbedo, “A review on the main challenges in automatic plant disease identification based on visible range images,” Biosystems Engineering, vol. 144, pp. 52 – 60, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1537511015302476
- H. F. Pardede, E. Suryawati, R. Sustika, and V. Zilvan, “Unsupervised convolutional autoencoder-based feature learning for automatic detection of plant diseases,” in 2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Nov 2018, pp. 158–162
- A. Ramcharan, K. Baranowski, P. McCloskey, B. Ahmed, J. Legg, and D. P. Hughes, “Deep learning for image-based cassava disease detection,” Frontiers in Plant Science, vol. 8, p. 1852, 2017. [Online]. Available: https://www.frontiersin.org/article/10.3389/fpls.2017.01852
- B. S. Kusumo, A. Heryana, O. Mahendra, and H. F. Pardede, “Machine learning-based for automatic detection of corn-plant diseases using image processing,” in 2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA), 2018, pp. 93–97
- Y. Dandawate and R. Kokare, “An automated approach for classification of plant diseases towards development of futuristic decision support system in indian perspective,” in 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2015, pp. 794–799
- D. G. Tsolakidis, D. I. Kosmopoulos, and G. Papadourakis, “Plant leaf recognition using zernike moments and histogram of oriented gradients,” in Artificial Intelligence: Methods and Applications, A. Likas, K. Blekas, and D. Kalles, Eds. Cham: Springer International Publishing, 2014, pp. 406–417
- E. Suryawati, R. Sustika, R. S. Yuwana, A. Subekti, and H. F. Pardede, “Deep structured convolutional neural network for tomato diseases detection,” in 2018 International Conference on Advanced ComputerScience and Information Systems (ICACSIS), 2018, pp. 385–390
- K. P. Ferentinos, "Deep learning models for plant disease detection and diagnosis," Computers and Electronics in Agriculture, vol. 145, pp. 311 - 318, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168169917311742
- D. Krisnandi, H. Pardede, R. Yuwana, V. Zilvan, A. Heryana, F. Fauziah, and V. Rahadi, "Diseases classification for tea plant using concatenated convolution neural network," CommIT (Communication and Information Technology) Journal, vol. 13, 10 2019
- A. Fuentes, S. Yoon, S. Kim, and D. Park, "A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition," Sensors, vol. 17, no. 9, p. 2022, Sep 2017. [Online]. Available: http://dx.doi.org/10.3390/s17092022
- J. Carranza-Rojas, H. Goeau, P. Bonnet, E. Mata-Montero, and A. Joly, "Going deeper in the automated identification of herbarium specimens," BMC Evolutionary Biology, vol. 17, no. 1, p. 181, Aug 2017. [Online]. Available: https://doi.org/10.1186/s12862-017-1014-z
- R. S. Yuwana, E. Suryawati, V. Zilvan, A. Ramdan, H. F. Pardede, and F. Fauziah, "Multi-condition training on deep convolutional neural networks for robust plant diseases detection," in 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA), 2019, pp. 30-35.14
- G. L. Grinblat, L. C. Uzal, M. G. Larese, and P. M. Granitto, "Deep learning for plant identification using vein morphological patterns," Computers and Electronics in Agriculture, vol. 127, pp. 418 - 424, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168169916304665
- Z. Mao, J. Chen, and M. Yang, "Multi-branch structure for hierarchical classification in plant disease recognition," in Pattern Recognition and Computer Vision, Z. Lin, L. Wang, J. Yang, G. Shi, T. Tan, N. Zheng, X. Chen, and Y. Zhang, Eds. Cham: Springer International Publishing, 2019, pp. 528-538
- V. Zilvan, A. Ramdan, A. Heryana, D. Krisnandi, E. Suryawati, R. S. Yuwana, R. B. S. Kusumo, and H. F. Pardede, “Convolutional variational autoencoder-based feature learning for automatic tea clone recognition,” Journal of King Saud University - Computer and Information Sciences, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1319157821000227
- Y. Bengio, A. C. Courville, and P. Vincent, “Unsupervised feature learning and deep learning: A review and new perspectives,” CoRR, vol. abs/1206.5538, 2012. [Online]. Available: http://arxiv.org/abs/1206.5538
- V. Zilvan, A. Ramdan, E. Suryawati, R. B. S. Kusumo, D. Krisnandi, and H. F. Pardede, “Denoising convolutional variational autoencoders-based feature learning for automatic detection of plant diseases,” in 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), 2019, pp. 1–6
- A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” 2015
- M. A. Ranzato, Y.-L. Boureau, and Y. LeCun, "Sparse feature learning for deep belief networks," in Proceedings of the 20th International Conference on Neural Information Processing Systems, ser. NIPS'07. Red Hook, NY, USA: Curran Associates Inc., 2007, p. 1185-1192
- Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015. [Online]. Available: https://doi.org/10.1038/nature14539
- S. Rahman, M. M. Rahman, M. Abdullah-Al-Wadud, G. D. Al-Quaderi, and M. Shoyaib, “An adaptive gamma correction for image enhancement,” EURASIP Journal on Image and Video Processing, vol.2016, no. 1, p. 35, 2016. [Online]. Available: https://doi.org/10.1186/s13640-016-0138-1
- N. Alswaidan and M. E. B. Menai, “Hybrid feature model for emotion recognition in arabic text,” IEEE Access, vol. 8, pp. 37 843–37 854, 2020
- M. Sohaib, C.-H. Kim, and J.-M. Kim, “A hybrid feature model and deep-learning-based bearing fault diagnosis,” Sensors, vol. 17, no. 12, p. 2876, Dec 2017. [Online]. Available: http://dx.doi.org/10.3390/s17122876
- D. Guo, M. Zhong, H. Ji, Y. Liu, and R. Yang, “A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors,” Neurocomputing, vol. 319, pp. 155 – 163, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231218309962
- H. Farid, “Blind inverse gamma correction,” IEEE Transactions on Image Processing, vol. 10, no. 10, pp. 1428–1433, 2001
- P.Wang, F. Liu, C. Yang, and X. Luo, “Blind forensics of image gamma transformation and its application in splicing detection,” Journal of Visual Communication and Image Representation, vol. 55, pp. 80 – 90, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1047320318301159
- S. Dash and M. R. Senapati, "Enhancing detection of retinal blood vessels by combined approach of dwt, tyler coye and gamma correction," Biomedical Signal Processing and Control, vol. 57, p. 101740, 2020. [Online].Available: http://www.sciencedirect.com/science/article/pii/S1746809419303210
- A. Bhandari, A. Kumar, and G. Singh, "Improved knee transfer function and gamma correction based method for contrast and brightness enhancement of satellite image," AEU - International Journal of Electronics and Communications, vol. 69, no. 2, pp. 579 - 589, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S143484111400332X
- G. Cao, L. Huang, H. Tian, X. Huang, Y.Wang, and R. Zhi, “Contrast enhancement of brightness-distorted images by improved adaptive gamma correction,” Computers and Electrical Engineering, vol. 66, pp. 569 – 582, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0045790616306292
- Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River, N.J. (2008). http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X
- Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556 (2014)
- Hughes, D.P., Salath, M.: An open access repository of images on plant health to enable the development of mobile disease diagnostics through machine learning and crowdsourcing. CoRR abs/1511.08060 (2015). 1511.08060
Last update:
No citation recorded.
Last update: 2025-07-08 18:31:33
No citation recorded.
Copyright (c) 2024 Vicky Zilvan, Ade Ramdan, Ahmad Afif Supianto, Ana Heryana, Andria Arisal, Asri Rizki Yuliani, Dikdik Krisnandi, Endang Suryawati, Raden Budiarianto Suryo Kusumo, Raden Sandra Yuawana, Hilman F. Pardede

This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
Starting from 2021, the author(s) whose article is published in the JTSiskom journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JTSiskom, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
- their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), is free from the rights of third parties, and the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (Jurnal Teknologi dan Sistem Komputer).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JTSiskom will not be held responsible for anything arising because of the writer's internal dispute. JTSiskom will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JTSiskom allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JTSiskom to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.