- Z. A. Putra and S. A. Z. Abidin, “Application of seir model in COVID-19 and the effect of lockdown on reducing the number of active cases,” Indonesian Journal of Science and Technology, vol. 5, no. 2, pp.185-192, 2020. doi: 10.17509/ijost.v5i2.24432
- A. L. Kapetanovi'c and D. Poljak, “Modeling the epidemic outbreak and dynamics of COVID-19 in Croatia,” in the International Conference on Smart and Sustainable Technologies, Split, Croatia, Sep. 2020, pp. 1-5. doi: 10.23919/SpliTech49282.2020.9243757
- D. Giuliani, M. M. Dickson, and G. Espa, F. Santi, “Modelling and predicting the spatio-temporal spread of coronavirus disease 2019 (COVID-19) in Italy,” Available at SSRN 3559569, Mar. 2020. doi: 10.2139/ssrn.3559569
- A. Godio, F. Pace, and A. Vergnano, “SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence,” International Journal of Environmental Research and Public Health, vol. 17, no. 10, 3535, 2020. doi: 10.3390/ijerph17103535
- L. Peng, W. Yang, D. Zhang, C. Zhuge, and L. Hong, “Epidemic analysis of COVID-19 in China by dynamical modeling,” 2020, arXiv:2002.06563. doi: 10.48550/arXiv.2002.06563
- S. He, Y. Peng, and K. Sun, “SEIR modeling of the COVID-19 and its dynamics,” Nonlinear Dynamics, vol. 101, no. 3, pp. 1667-1680, 2020. doi: 10.1007/s11071-020-05743-y
- E. Soewono, “On the analysis of covid-19 transmission in Wuhan, Diamond Princess and Jakarta-cluster,” Communication in Biomathematical Sciences, vol. 3, no. 1, pp. 9–18, 2020. doi: 10.5614/cbms.2020.3.1.2
- D. Fanelli and F. Piazza, “Analysis and forecast of COVID-19 spreading in China, Italy and France,” Chaos, Solitons & Fractals, vol. 134, 109761, 2020. doi: 10.1016/j.chaos.2020.109761
- K. Roosa et al., “Short-term forecasts of the covid-19 epidemic in Guangdong and Zhejiang, China: February 13–23, 2020,” Journal of Clinical Medicine, vol. 9, no. 2, 596, 2020. doi: 10.3390/jcm9020596
- C. Y. Shen, “Logistic growth modelling of covid-19 proliferation in China and its international implications,” International Journal of Infectious Diseases, vol. 96, pp. 582–589, 2020. doi: 10.1016/j.ijid.2020.04.085
- A. M. Almeshal, A. I. Almazrouee, M. R. Alenizi, and S. N. Alhajeri, “Forecasting the spread of COVID-19 in Kuwait using compartmental and logistic regression models,” Applied Sciences, vol. 10, no. 10, 3402, 2020. doi: 10.3390/app10103402
- J. F. Medina-Mendieta, M. Cortés-Cortés, and M. Cortés-Iglesias, “COVID-19 Forecasts for Cuba using logistic regression and Gompertz curves,” MEDICC Review, vol. 22, no. 3, pp. 32-39, 2020. doi: 10.37757/MR2020.V22.N3.8
- B. Malavika, S. Marimuthu, M. Joy, A. Nadaraj, E. S. Asirvatham, and L. Jeyaseelan, “Forecasting COVID-19 epidemic in India and high incidence states using SIR and logistic growth models,” Clinical Epidemiology and Global Health, vol. 9, pp. 26-33, 2020. doi: 10.1016/j.cegh.2020.06.006
- K. Wu, D. Darcet, Q. Wang, and D. Sornette, “Generalized logistic growth modeling of the COVID-19 outbreak: comparing the dynamics in the 29 provinces in China and in the rest of the world,” Nonlinear Dynamics, vol. 101, no. 3, pp. 1561-1581, 2020. doi: 10.1007/s11071-020-05862-6
- P. Wang, X. Zheng, J. Li, and B. Zhu, “Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics,” Chaos, Solitons Fractals, vol. 139, 110058, 2020. doi: 10.1016/j.chaos.2020.110058
- N. Nuraini, K. Khairudin, and M. Apri, “Modeling simulation of covid-19 in Indonesia based on early endemic data,” Communication in Biomathematical Sciences, vol. 3, no. 1, pp. 1–8, 2020. doi: 10.5614/cbms.2020.3.1.1
- D. G. Kleinbaum, L. L. Kupper, and L. E. Chambless. “Logistic regression analysis of epidemiologic data: theory and practice,” Communications in Statistics-Theory and Methods, vol. 11, no. 5, pp. 485–547, 1982. doi: 10.1080/03610928208828251
- R. Jin, F. Yan, and J. Zhu, “Application of logistic regression model in an epidemiological study,” Science Journal of Applied Mathematics and Statistics, vol. 3, no. 5, pp. 225–229, 2015. doi: 10.11648/j.sjams.20150305.12
- J. S. Cramer, “The early origins of the logic model,” Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, vol. 35, no. 4, pp. 613-626. 2004. doi: 10.1016/j.shpsc.2004.09.003
- A. A. King, M. Domenech de Cellès, F. M. Magpantay, and P. Rohani. “Avoidable errors in the modelling of outbreaks of emerging pathogens with special reference to Ebola,” in Proceedings of the Royal Society B: Biological Sciences, vol. 282, no. 1806, 20150347, 2015. doi: 10.1098/rspb.2015.0347
- S. Y. Lee, B. Lei, and B. Mallick, “Estimation of COVID-19 spread curves integrating global data and borrowing information,” PLoS ONE, vol. 15, no. 7, e0236860, 2020. doi: 10.1371/journal.pone.0236860
- F. J. Richards, “A flexible growth function for empirical use,” Journal of Experimental Botany, vol. 10, no. 2, pp. 290–301, 1959. doi: 10.1093/jxb/10.2.290
- W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory of epidemics,” in Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, vol. 115, no. 772, pp. 700–721, 1927. doi: 10.1098/rspa.1927.0118
- T. Harko, F. S. Lobo, and M. K. Mak, “Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates,” Applied Mathematics and Computation, vol. 236, pp. 184–194, 2014. doi: 10.1016/j.amc.2014.03.030
- J. A. P. Heesterbeek, “A brief history of R0 and a recipe for its calculation,” Acta Biotheoretica, vol. 50, no. 3, pp. 189–204, 2002. doi: 10.1023/A:1016599411804
- M. S. Nixon and A. S. Aguado, “Chapter 11 – Appendix 2: Least squares analysis”, in Feature Extraction and Image Processing for Computer Vision, 3rd ed., Academic Press, 2012, pp. 519-523. doi: 10.1016/B978-0-12-396549-3.00017-3
- X. Luo, H. Duan, and K. Xu, “A novel grey model based on traditional Richards model and its application in COVID-19”, Chaos Solitons Fractals, vol. 142, 2021. doi: 10.1016/j.chaos.2020.110480
- Satuan Tugas Penanganan COVID-19, “Perkembangan testing nasional jadikan bahan evaluasi,” Dec. 2020. [Online]. Available: https://covid19.go.id/p/berita/perkembangan-testing-nasional-jadikan-bahan-evaluasi [Accessed: March 11, 2021]
Last update:
No citation recorded.
Last update: 2025-01-05 13:10:11
No citation recorded.
Copyright (c) 2022 The authors. Published by Department of Computer Engineering, Universitas Diponegoro
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
Starting from 2021, the author(s) whose article is published in the JTSiskom journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JTSiskom, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
- their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), is free from the rights of third parties, and the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (Jurnal Teknologi dan Sistem Komputer).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JTSiskom will not be held responsible for anything arising because of the writer's internal dispute. JTSiskom will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JTSiskom allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JTSiskom to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.