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Abstract  –  This  paper  compares  four  mathematical 
models  to  describe  Indonesia's  current  coronavirus 
disease  2019  (COVID-19)  pandemic.  The  daily 
confirmed  case  data  are  used  to  develop  the  four 
models: Logistic,  Richards,  SIR, and SEIR. A least-
square  fitting  computes  each  parameter  to  the 
available  confirmed  cases  data.  We  conducted 
parameterization  and  sensitivity  experiments  by 
varying the length of the data from 60 until 300 days 
of  transmission.  All  models  are  susceptible  to  the 
epidemic  data.  Though the  correlations  between  the 
models and the data are pretty good (>90%), all models 
still  show a poor performance (RMSE>18%). In this 
study case, Richards model is superior to other models 
from the  highest  projection  of  the  positive  cases  of 
COVID-19  in  Indonesia.  At  the  same  time,  others 
underestimate  the  outbreak  and  estimate  too  early 
decreasing  phase.  Richards  model  predicts  that  the 
pandemic remains high for a long time, while others 
project the pandemic will finish much earlier.
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I. INTRODUCTION

The  first  human  cases  of  coronavirus  diseases 
(COVID-19)  caused  by  the  novel  severe  acute 
respiratory syndrome coronavirus (SARS-CoV-2) were 
first  reported  by  officials  in  Wuhan  City,  China,  in 
December  2019.  A wholesale  food market  in  Wuhan 
city  was  believed  as  the  source  of  this  outbreak  or 
played  a  role  in  the  initial  amplification  of  the 
pandemic.  The President  of  Indonesia announced  that 
COVID-19 was confirmed to have spread in the country 
on March 2, 2020, and spread to all provinces by April 
9, 2020. The spread of COVID-19 has impacted various 
aspects of life for the Indonesian people. One strategy of 
the  Indonesian  government  to  prevent  the  spread  of 
COVID-19  is  to  establish  a  Large-Scale  Social 
Restriction  (LSSR/PSBB)  policy.  Several  restrictions 
are applied,  such as restrictions on religious activities 
and  activities  restrictions  in  public  facilities,  schools, 
and workplaces.

Moreover,  the  Indonesian  government  obliges 
people  to  implement  health  protocols  (mask-wearing, 
hand-washing, social distancing). The government also 
makes  improvements  strategies  in  the  health  system, 
especially in 3T (testing, tracing, and treatment) and in 
COVID-19 vaccination. However, for more than a year 
COVID-19 pandemic has occurred in Indonesia. There 
are  no  signs  that  the  transmission  can  be  controlled. 
Based  on  Worldometers  data  in  mid-January  2021, 
Indonesia became the highest positive case of COVID-
19 in  Southeast  Asia  and  the  fourth  highest  in  Asia. 
Besides, the death case is also the third highest in Asia. 
The  Indonesian  government  is  still  endeavoring  to 
accelerate the COVID-19 pandemic handling. 

The spread of COVID-19 in many regions has been 
investigated in recent studies. In 2020, Putra and Abidin 
[1] modeled  the  spread  of  COVID-19  in  South  East 
Asia  using  a  compartment  model,  namely  the  SEIR 
model.  The  SEIR  model  is  also  used  to  model  the 
outbreak and the dynamic of COVID-19 in Croatia [2], 
Italy  [3],  [4],  and  Wuhan  [5],  [6].  Soewono  [7] also 
implemented the SEIR model to investigate the COVID-
19 spread  in  Wuhan,  Diamond Princess,  and  Jakarta-
cluster in the beginning time. 

Another  compartment  model,  the  SIR model,  was 
well  implemented  in  the  COVID-19  transmission  in 
China,  Italy,  and  France  [8].  Simpler  growth  models 
such  as  the  classical  logistic  or  generalized  logistic 
model called Richards model are also used to describe 
the spread in Guangdong and Zhejiang [9]. The logistic 
model has been applied for COVID-19 cases to forecast 
the movement of the outbreak in China  [10] and other 
infected countries, such as Kuwait [11], Cuba [12], and 
India [13]. Wu et al. [14] calibrated the logistic model to 
the  reported  infected  cases  in  China  and  33  other 
countries  in  USA,  Europe,  Japan,  and  Turkey.  They 
classified them based on the level of outbreak progress. 
Wang  et  al.  [15] stated  that  the  peak  of  the  global 
outbreak would happen in late October by summarizing 
the modeling results for the world, Brazil, Russia, India, 
Peru, and Indonesia. Nuraini et al. [16] applied Richards 
model to model the early stage of the transmission of 
COVID-19  in  Indonesia,  resulting  in  a  vast 
overestimation.  This  shortcoming  may  be  due  to  the 
limited data and under-reported cases in the early phase. 
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Nevertheless,  an overestimation prediction is good for 
preparedness during a pandemic. 

This  paper  aims  to  simulate  the  dynamics  of 
COVID-19  in  Indonesia  based  on  four  epidemic 
models:  the  SEIR,  SIR,  Logistic,  and  Richards.  It 
compares and evaluates the model's performances based 
on the limited confirmed cases data. Four models were 
fitted with optimized parameters to estimate the number 
of  infected  individuals  over  time.  The  comparison  of 
four epidemic models was carried out to determine the 
projection results for each model, then compared with 
the actual data on daily cases.

II. RESEARCH METHODS 

A. Dataset

The  confirmed  case  data  were  collected  from  the 
official  website  of  Gugus  Tugas  COVID-19  of  the 
Ministry of Health of Indonesia1. We used 300 days of 
daily  confirmed cases  data  from March  2, 2020 until 
December 26, 2020, as model forcing. The number of 
populations in Indonesia is based on the results of the 
2020  population  census  from  the  Central  Bureau  of 
Statistics (BPS)2, i.e., 270.203.917 people. At the end of 
the  explanation,  we  used  daily  test  data  from 
KawalCOVID193 to  see  the  relationship  between  the 
number of daily tests and cases.

B. Epidemic models

Four  basic  epidemic  models,  namely  logistic, 
Richards, SIR, and SEIR, are implemented to describe 
the  dynamics  of  COVID-19  in  Indonesia.  Each 
epidemic  model  consists  of  five  model  simulations. 
Model simulations 1 to 5 (written as S1, S2, S3, S4, and 
S5) use 60, 120, 180, 240, and 300 days of confirmed 
cases of COVID-19 data, respectively.

Logistic model

For decades,  the use of logistic regression analysis 
has  been  widely  applicable  to  epidemiology  studies 
[17],  [18].  The  logistic  model  proposed  by  Pierre-
François Verhulst (1804–1849) and developed by other 
mathematicians in the following years [19] is a common 
S-shaped curve  (sigmoid)  describing  the  dynamics  of 
the infected individuals being controlled by the growth 
rate and population density. It is formulated in (1) where 
r,  K are  real  numbers.  The  variable  C(t) is  the 
cumulative infected persons by time  t,  r is the growth 
rate, and K is the final epidemic size. If C 0=C0>0 is the 
initial  number  of  infected  cases,  then  the  analytic 
solution for (1) is expressed in (2). 

1 https://covid19.go.id/peta-sebaran-covid19 (Accessed: Feb. 
17, 2021)

2 https://www.bps.go.id/pressrelease/2021/01/21/1854/hasil-
sensus-penduduk-2020.html  (Accessed: Feb.17, 2021)

3 https://kawalcovid19.id/  (Accessed: Mar. 11, 2021)

0≤ β , γ≤1                             (1)

C (t ; r ,K )=K (1+A exp(−rt))−1, A=
K−C0
C0

     (2)

King et al.  [20] found that deterministic models are 
appropriate  with  cumulative  cases,  lead  to  biased 
parameters,  and  overestimate  and  underestimate  the 
inconstancy of parameters. Therefore, in this study, we 
adopted to use the daily new confirmed cases.

Richards model

Richards model is an extension of the logistic model 
by adding a scale factor a, which measures the deviation 
from the symmetric simple logistic curve. Richards or 
generalized  logistic  model  is  widely  used  in 
epidemiology  modeling,  including  the  COVID-19 
outbreak  [14],  [21].  This  model  was  introduced  by 
Richards  [22] and is defined as  (3) where  r,  K are real 
numbers and  a is a positive real  number. The general 
solution for this differential equation is expressed in (4).

dC
dt

=rC(1−(CK )
a

)                        (3)

C ( t ;r ,K , a )=K (1+a exp(−r (t−tm) )
−1 /a        (4)

The C(t) represents the cumulative of infected cases 
at  time  t,  r is  the initial  infection rate,  K is  the final 
epidemic size which is the asymptotic total number of 
infections over the whole epidemics,  tm is a lag phase, 
and a is a scaling parameter. The flexibility of Richards 
model is due to the scaling parameter  a. If  a=1, then it 
becomes the logistic model, and if a converges to zero, 
then the model converges to the Gompertz model [21].

SIR model

Susceptible-Infected-Recovered  (SIR) model  is  the 
simplest  deterministic  (compartment)  model  that 
predicts the behavior of an epidemic outbreak  [23].  It 
follows ordinary differential  equations  as expressed in 
(5)-(8) with the initial  condition  S (0)≥0,  I (0 )≥0,  and 
0≤ β , γ . 

dS
dt

=−β
SI
N

                                (5)

R0=
β
γ

                              (6)

dR
dt

=γI                                    (7)

N=S+ I +R                                (8)

This model considers only three compartments in the 
population (N), namely the susceptible compartment S(t) 
represents the number of people who are susceptible or 
have  not  contacted  the  disease,  the  infected 
compartment I(t) shows the number of people who have 
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been infected and can spread the disease, the recovered 
compartment  R(t)  are  people  who have  been  infected 
and recovered from the disease, also cannot be infected 
again, in the certain time t. The transition rate between 
susceptible (S) and infected (I) is indicated by contact 
rate  (β).  The  transition  rate  between  infected  and 
recovered,  is  γ,  which has the meaning of the rate of 
recovery. If the duration of the infection is denoted D, 
then  γ=1/D,  since  an  individual  experiences  one 
recovery in D units of time. Since gamma is interpreted 
as transition rate (in the term of probability), its range is 
between 0 and 1 [24]. 

The dynamics of the infectious compartment depends 
on the ratio of the expected number of new infections in 
the  susceptible  compartment,  which  is  called  by  basic 
reproduction number (R0) and expressed in (9). If the R0 

less than 1 then the population of infected cannot grow. 
An epidemic occurs if the number of infected individuals 
increases or R0 greater than 1. In general, the greater the 
R0, the more difficult to control the epidemic [25].

R0=
β
γ

                                    (9)

SEIR model

Susceptible-Exposed-Infected-Recovered  (SEIR) 
model is an extension of the SIR model by adding an 
exposed  (E)  compartment  to  make  the  model  more 
realistic because the virus needs an incubation period to 
transmit to humans. The basic SEIR model is written in 
terms of differential equation as  expressed in  (10)-(14), 
with  the  initial  condition  S (0)≥0,  E (0 )≥0,
I (0 )≥0 , R (0 )≥0, and 0≤ β , γ , σ ≤1.

dS
dt

=−β SI
N

                              (10)

dE
dt

=β SI
N

−σE                            (11)

dI
dt

=σE−γI                               (12)

dR
dt

=γI                                  (13)

N=S+E+ I+R                             (14)

In this model, one more compartment is added to the 
population  described  in  the  SIR  model,  namely  the 
exposed compartment E(t) is the people who have been 
infected but have not yet been infectious in a specific 
time  t.  This  stage  of  condition  occurs  between 
susceptible and infected compartments.  The parameter 
of this compartment σ regulates the lag between having 
undergone  an  infectious  contact  and  showing 
symptoms.  This  parameter  takes  people  from  the 
exposed compartment to the infected compartment [4].

Optimization problem 

For each epidemic model, we defined an optimization 
problem to estimate the best parameters, which specify 

the model by a least-square method [26]. Given a set of N 
data measurements Y i , i∈1 ,N , which are to be fitted to 
a model f(x), where x is a vector of parameter values, we 
minimize the square of the difference between the data 
measurements  and the values  of  the model  to  give an 
estimate of the parameters ~x. The minimization problem 
is defined as (15). Thus, the estimated ~x is the solution of 
the system in (16) and (17).

~x=min
x
∑
i=1

N

(Y i−f (t i, x))
2
                   (15)

∂
∂ x∑i=1

N

(Y i−f ( t i, x ) )
2
=0                   (16)

∑
i=1

N

(Y i−f (t i , x ))
∂ f ( ti , x)

∂ x
=0                (17)

C. Evaluation method

We  evaluated  the  model  by  measuring  normalized 
root mean square error (NRMSE) and Pearson correlation 
(corr) to determine the fit of the model to the confirmed 
cases of COVID-19 data using (18) and (19), where x is 
the model calculation and y is the confirmed cases data. 
NRMSE measures the difference in the number of daily 
cases calculated by the model and has been confirmed. 
The Pearson correlation coefficient  measures the linear 
relationship  between  result  data  from  the  model  and 
confirmed data. We applied these two evaluation methods 
to make the model results more robust.

NRMSE=
RMSE
y

                        (18)

corr ( X ,Y )=
∑ (x−x)( y−y)

√∑ (x−x)2( y−y)2
            (19)

III. RESULTS AND DISCUSSION

A. Parameter estimation

In this section, the least-squares method is applied to 
estimate the parameters of each epidemic model to fit 
the actual  situation of the COVID-19 daily case data. 
The optimized parameters of each model are presented 
in Table 1 through Table 6.

In the Logistic model, the more days in the model 
simulation, the smaller r and the higher K, as shown in 
Table 1. The decreasing value of the growth rate agrees 
with the actual condition that the transmission is very 
rapid  initially  and  slightly  slowed  down  afterward. 
Meanwhile,  the value of  parameter  K referring  to  the 
final epidemic size underestimates the actual epidemic 
condition significantly.

Similar  to  the  Logistic  model  results,  Richard’s 
model  shows  a  decrease  in  the  growth  rate  and  an 
increase of  K (Table 2). The largest value of  r is 0.07 
only at the beginning. The more days, the growth rate 
does  not  change.  The  more  extended  data  we  used 
makes the model tend to be a Gompertz model [21].
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Table 3 and Table 4 show the value of the optimized 
β and γ of SIR and SEIR models bounded by 0 and 1 as 
described  in  section  II.  In  addition,  we  also  add  the 
value  of  the  reproduction  number  and  the  error 
computed  by  NRMSE.  The parameters  are  calculated 
under conditions 0≤ β , γ≤1. SIR and SEIR models give 
very large NRMSE, showing that the model results in a 
bad  performance.  Two  simulations  from  the  SEIR 
model seem unrealistic as the reproduction number (R0) 
value is infinity. Other simulations in SEIR based on R0 

show much faster  growth  than  all  simulations by  the 
SIR model. 

The  significant  error  in  SIR  and  SEIR  models 
motivates  us  to  optimize  the  models  by  relieving the 
condition  for  the  parameters  so  that  we  only  restrict 
β , γ≥0. Then, the optimized parameters are presented in 
Table 5 and  Table 6.  The parameter values of the SIR 
and  SEIR  models  by  only  limiting  parameters  as 
positive  constants.  Parameter  values  that  are  limited 
between 0 and 1 produce much higher errors than the 
parameters without limitation. Even though the selected 
parameters for SIR and SEIR models do not follow the 
constraints of the ideal SIR and SEIR models, the model 
performances seem to be better, and the results will be 
used for further analysis. Moreover, all simulations by 
SIR and SEIR models give R0 greater than 1, indicating 
a transmission is occurring.

B. Model fitting

Four epidemic models estimate the daily confirmed 
cases of COVID-19 in Indonesia (Figure 1). Each model 
is fitted by five different lengths of the confirmed cases 

data, namely 60, 120, 180, 240, and 300 days data. The 
SIR  and  the  SEIR  model  have  a  similar  projection 
pattern  for  each  model  simulation.  The  Logistic,  the 
SIR,  and  the  SEIR  models  have  the  highest  peak  of 
simulation results using 300 days data, while Richards 
model  shows a maximum peak when using 240 days 
data  (Simulation  4).  Unlike  other  models,  Richards 
model simulation using 240 or 300 days of data show 
that the peak of the projection is around April 2021 and 
the end of the pandemic is more than 600 days or after 
October  2021.  Other  model  simulations  show  an 
underestimation of the outbreak and estimate too early 
decreasing phase.

Table  7 shows  the  model  simulation  and  the 
projection results at peak days for each epidemic model. 
The Logistic, SIR, and SEIR models have the highest 
peak,  around  4842,  6253,  and  6060  infected  people, 
respectively. Richards model has the highest peak day in 
Simulation  4,  about  8232  cases.  The  SIR  and  SEIR 
models have similar results based on Figure 1 and Table 7. 
This similarity is because the SEIR model is a SIR model 
extension by adding an exposed component as a latent 
phase when a person is infected with the virus but has 
not yet had symptoms.

C. Model performance

The model performances consisting of NRMSE and 
correlations  of  all  models  are  shown in  Table  8 and 
Table  9.  Richards  model  has  the  lowest  NRMSE 
compared to other pandemic models, except for model 
Simulation 4. Model Simulation 4 in the Logistic model 
has  the  lowest  value  of  NRMSE  with  18.57%. 
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Table 1. Parameters of Logistic model

Model r K
S1 0.11 12,703.33
S2 0.04 95,043.00
S3 0.03 246,163.34
S4 0.02 733,210.09
S5 0.02 986,803.55

Table 2. Parameters of Richards model

Model r a K
S1 0.07 0.35 16,751.00
S2 0.01 0.00 381,441.03
S3 0.01 0.04 682,131.59
S4 0.01 0.00 4,401,372.99
S5 0.01 0.00 2,689,916.12

Table 3. Parameters of SIR model with 0≤ β , γ≤1

Model β γ R0 NRMSE (%)
S1 0.99 0.88 1.13 84.05
S2 0.99 0.93 1.06 72.09
S3 0.99 0.95 1.04 78.79
S4 0.99 0.96 1.03 82.27
S5 0.99 0.97 1.02 78.21

Table 4. Parameters of SEIR model with 0≤ β , γ≤1

Model β γ σ R0 NRMSE (%)
S1 0.19 2E-12 0.99 inf 75.00
S2 0.18 0.03 0.90 6.0 64.36
S3 0.19 0.06 0.73 3.2 72.39
S4 0.12 1.7E-11 0.99 inf 75.29
S5 0.19 0.06 0.42 3.2 73.81

  

Table 5. Parameters of SIR model with 0≤ β , γ

Model β γ R0 NRMSE (%)
S1 97.49 97.32 1.002 41.52
S2 29.01 28.92 1.003 47.23
S3 15.45 15.38 1.005 49.01
S4 8.58 8.25 1.040 40.74
S5 5.87 5.83 1.007 59.23

Table 6. Parameters of SEIR model with 0≤ β , γ

Model β γ σ (106) R0 NRMSE (%)
S1 81.94 81.72 7.8 1.003 33.22
S2 24.68 24.52 6.6 1.007 41.04
S3 13.28 13.14 0.6 1.011 41.43
S4 7.54 7.42 1,705.3 1.016 34.77
S5 5.20 5.09 46.8 1.022 52.71



Meanwhile,  the highest NRMSE is shown by the SIR 
Model in model Simulation 5 with a value of 59.23%. 

For  correlation,  most  of  the  simulation  models  in 
each epidemic model have a value of more than 90%. 
The  Logistic  model  has  the  highest  correlation  of 
97.75%  in  model  Simulation  4.  However,  Richards 
model  has  the  highest  average  correlation  of  95.79% 
compared to the other epidemic models. Richards model 
is a development of the Logistic model by including an 
additional scaling factor in the calculations. The lowest 
correlation value in the SIR model is 85.41% for model 
Simulation 5. 

Richards model has the highest mean of correlation 
and the lowest mean of NRMSE. Therefore, this model 
has the best  performance compared to other epidemic 
models. However, based on the NRMSE of four models, 
they  still  have  large  errors.  These  errors  are 
understandable as the dynamic models only consider a 
saturated growth with the reduction of cases due to the 
attempt  to  avoid  contact  and  the  implementation  of 
control  measures  [27] without  considering  the 
uncertainty of  the model.  External  factors  such as  air 
quality, temperature, population, and environment may 
also affect disease transmission. Those might be one of 
the reasons for the large error in the performance of the 
basic epidemic model presented in this paper, so justify 

the  importance  of  external  uncertainty  factors  in 
modeling the COVID-19 transmission. 

D. Relationship between daily tests and new cases of 
COVID-19

According  to  Figure  2,  the  number  of  daily 
polymerase  chain  reaction  (PCR)  swab  tests  and  the 
number  of  new  positive  cases  of  COVID-19  in 
Indonesia  from  March  2  to  December  26,  2020, 
correlate  highly with the Pearson correlation  value of 
93.75%. Since the pandemic began, the number of tests 
was  expected  to  increase  continuously  so  that  more 
infected people were quarantined and the spread would 
decrease. 
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(a) Logistic model                                                                         (b) Richards model

(c) SIR model                                                                          (d) SEIR model

Figure 1. The fit of four epidemic models to infected cases

Table  7. Maximum number of confirmed cases based 
on four pandemic models (in person)

Model
Peak

S1 S2 S3 S4 S5
Logistic 355   991 1945 4153 4842
Richards 342 1503 2414 8232 5762
SIR 403 1169 2298 4616 6253
SEIR 382 1130 2255 4428 6060



The number  of  COVID-19 cases  decreased  at  the 
beginning of November.  Unfortunately,  this was not a 
consequence  of  good  control,  but  there  was  a  long 
weekend at the end of October when some laboratories 
were  not  conducting  PCR tests.  According  to  World 
Health Organization (WHO) standards,  the number of 
tests is 1 per 1,000 people multiplied by the population 
per week. The government continues increasing testing 
capacity according to WHO standards [28]. The number 
of testing increased again and reached 262.568 people 
per week, or 97% of the WHO standard in the first week 
of December, still less than the standard value.

Overall,  the  performance  of  the  four  epidemic 
models is still needed to be optimized. Incorporation of 
a  grey  information  method  for  external  uncertainty 
factors to the basic epidemic model as proposed in [27] 
may improve the model performance.  Besides,  adding 
the number of tests in the model should be considered as 
the number of daily cases of COVID-19 in Indonesia is 
significantly affected by the number of daily tests. The 
decrease in daily cases was not due to good control, but 
to a decrease in daily tests. If the number of conducted 
tests  is  still  less  than  the  standard  value,  then  the 
epidemiological curve may not be reliable in describing 
the actual condition in Indonesia. 

IV. CONCLUSION

This  paper  presented  various  model  simulations 
based  on  four  epidemic  models,  namely  the  Logistic, 
Richards,  SIR,  and  SEIR  models,  to  project  the 
pandemic  of  COVID-19  in  Indonesia.  Except  for 
Richards model, three other models show that the longer 
duration of the data is used, the higher the peak of the 
projection will be.  We remark that  the SIR and SEIR 
model performs similarly. Of these four models, the best 
model  performance is  Richards  model,  which  has  the 
highest  mean  of  correlation  and  the  lowest  mean  of 
NRMSE.  Richards  model  describes  the  highest 
projection  of  the  positive  cases  of  COVID-19  in 
Indonesia.  Other  epidemic  models  show  an 
underestimation of the outbreak and estimate too early 
decreasing  phase.  Richards  model  shows the  peak  of 
daily cases in April 2021 and the end of the pandemic 
after October 2021. 
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