Segmentation and analysis of Pap smear microscopic images using the K-means and J48 algorithms

Sri Hadianti, Dwiza Riana

Abstract


A Pap smear is used to early detection cervical cancer. This study proposes the segmentation and analysis method of Pap smear cells images using the K-means algorithm so that cytoplasmic cells, nuclear cells, and inflammatory cells can be segmented automatically. The results of the feature analysis from the cytoplasmic, nuclear, and inflammatory cell images were classified using the J48 algorithm with 37 training data. The training resulted in an accuracy of 94.594 %, precision of 95 %, and sensitivity of 94.6 %. The classification of 24 testing images resulted in an accuracy of 91.6%, a precision of 92.5 %, and a sensitivity of 91.7 %.

Keywords


k-means; GLCM; J48; pap smear; segmentation

References


Infodatin, “Beban kanker di Indonesia,” Pusat Data dan Informasi Kementerian Kesehatan RI, 2019. [Online]. Available: https://pusdatin.kemkes.go.id

S. Anggraeni, “Self efficacy wanita usia subur untuk melakukan pap smear ditinjau dari pengetahuan dan dukungan suami,” Viva Medika, vol. 10, no. 18, pp. 86–93, 2017.

R. S. D. Wijaya, A. Adiwijaya, A. B. Suksmono, and T. L. R. Mengko, “Segmentasi citra kanker serviks menggunakan markov random field dan algoritma K-means,” Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 5, no. 1, pp. 139-147, 2021. doi: 10.29207/resti.v5i1.2816

L. Zhao et al., “Automatic cytoplasm and nuclei segmentation for color cervical smear image using an efficient gap-search MRF,” Computers in Biology and Medicine., vol. 71, pp. 46–56, 2016. doi: 10.1016/j.compbiomed.2016.01.025

Y. Song, L. Zhang, S. Chen, D. Ni, B. Lei, and T. Wang, “Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning,” IEEE Transactions on Biomedical Engineering, vol. 62, no. 10, pp. 2421–2433, 2015. doi: 10.1109/TBME.2015.2430895

D. Riana, M. E. Plissiti, C. Nikou, D. H. Widyantoro, T. L. R. Mengko, and O. Kalsoem, “Inflammatory cell extraction and nuclei detection in pap smear images,” International Journal of E-Health and Medical Communications (IJEHMC), vol. 6, no. 2, pp. 27–43, 2015. doi: 10.4018/IJEHMC.2015040103

H. Bandyopadhyay and M. Nasipuri, “Segmentation of pap smear images for cervical cancer detection,” in 2020 IEEE Calcutta Conference, Kolkata, India, Feb. 2020, pp. 30–33. doi: 10.1109/CALCON49167.2020.9106484

D. Riana, H. Tohir, and A. N. Hidayanto, “Segmentation of overlapping areas on pap smear images with color features using K-means and otsu methods,” in Third International Conference on Informatics and Computing, Palembang, Indonesia, Oct. 2018, pp. 1–5. doi: 10.1109/IAC.2018.8780561

N. Merlina, E. Noersasongko, P. Nurtantio, M. Soeleman, D. Riana, and S. Hadianti, “Detecting the width of pap smear cytoplasm image based on GLCM feature,” in Smart Trends in Computing and Communications: Proceedings of SmartCom 2020, pp. 231–240, 2020. doi: 10.1007/978-981-15-5224-3_22

D. Kashyap et al., “Cervical cancer detection and classification using Independent Level sets and multi SVMs,” in 39th international conference on telecommunications and signal processing (TSP), Vienna, Austria, Jun. 2016, pp. 523–528. doi: 10.1109/TSP.2016.7760935

M. Arya, N. Mittal, and G. Singh, “Texture-based feature extraction of smear images for the detection of cervical cancer,” IET Computer Vision , vol. 12, no. 8, pp. 1049–1059, 2018. doi: 10.1049/iet-cvi.2018.5349

W. Wasswa, J. Obungoloch, A. H. Basaza-Ejiri, and A. Ware, “Automated segmentation of nucleus, cytoplasm and background of cervical cells from pap-smear images using a trainable pixel level classifier,” in IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, USA, Oct. 2019, pp. 1-9. doi: 10.1109/AIPR47015.2019.9174599

D. Riana, D. H. Widyantoro, and T. L. Mengko, “Extraction and classification texture of inflammatory cells and nuclei in normal pap smear images,” in 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, Bandung, Indonesia, Nov. 2015, pp. 65–69. doi: 10.1109/ICICI-BME.2015.7401336

A. Siswanto, A. Fadlil, and A. Yudhana, “Ekstraksi ciri metode gray level co-occurrence matrix untuk identifikasi sel darah putih,” JOINTECS (Journal of Information Technology and Computer Science), vol. 5, no. 2, pp. 71-88, 2020. doi: 10.31328/jointecs.v5i2.1334

V. K. Mishra, S. Kumar, and N. Shukla, “Image acquisition and techniques to perform image acquisition,” SAMRIDDHI: A Journal of Physical Sciences, Engineering and Technology, vol. 9, no. 1, 2017.

M. T. Sreedevi, B. S. Usha, and S. Sandya, “Papsmear image based detection of cervical cancer,” International Journal of Computer Applications, vol. 45, no. 20, pp. 35–40, 2012. doi:

S. Hadianti and D. Riana, “Sistem pengenalan otomatis diameter citra mantoux untuk deteksi dini penyakit tbc kelenjar,” Jurnal Techno Nusa Mandiri, vol. 15, no. 2, pp. 77-83, 2018. doi: 10.33480/techno.v15i2.892

M. Haralick, R. Robert, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Transactions on Systems, Man, and Cybernetics., vol. 3, no. 6, pp. 610–621, 1997. doi: 10.1109/TSMC.1973.4309314

M. Yusa, E. Utami, and E. Luthfi, “Evaluasi performa algoritma klasifikasi decision tree id3,” INFOSYS (Information System) Journal, vol. 4, no. 1, pp. 23–34, 2016.

J. H. J. C. Ortega, M. R. Resureccion, L. R. Q. Natividad, E. T. Bantug, A. C. Lagman, and S. R. Lopez, “An analysis of classification of breast cancer dataset using J48 algorithm,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 1.3, pp. 475–480, 2020. doi: 10.30534/ijatcse/2020/7591.32020

H. Seif, “Naive bayes and j48 classification algorithms on swahili tweets: perfomance evaluation,” International Journal of Computer Science and Information Security, vol. 14, no. 1, pp. 1-4, 2016.

I. A. Angreni, S. A. Adisasmita, M. I. Ramli, and S. Hamid, “Pengaruh nilai k pada metode k-nearest neighbor (KNN) terhadap tingkat akurasi identifikasi kerusakan jalan,” Rekayasa Sipil Mercu Buana, vol. 7, no. 2, pp. 63-70, 2019. doi: 10.22441/jrs.2018.v07.i2.01

S. Fekri-Ershad, “Pap smear classification using combination of global significant value, texture statistical features and time series features,” Multimedia Tools and Applications., vol. 78, no. 22, pp. 31121–31136, 2019. doi: 10.1007/s11042-019-07937-y




DOI: https://doi.org/10.14710/jtsiskom.2021.13943

Copyright (c) 2021 The Authors. Published by Department of Computer Engineering, Universitas Diponegoro

Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.