HSV image classification of ancient script on copper Kintamani inscriptions using GLRCM and SVM

Christina Purnama Yanti, I Gede Andika

Abstract


The problem of inscription physical damage as one of the historical heritages can be overcome using an image processing technique. The purpose of this study is to design a segmentation application for ancient scripts on inscriptions to recognize the character patterns on the inscriptions in digital form. The preprocessing was carried out to convert images from RGB to HSV. The application used the gray level run length matrix (GLRLM) to extract texture features and the support vector machine (SVM) method to classify the results. The inscription image segmentation was carried out through the pattern detection process using the sliding window method. The application obtained 88.32 % of accuracy, 0.87 of precision, and 0.94 of sensitivity.

Keywords


segmentation; inscription; HSV image; GLRLM; SVM

References


I. W. R. Suarmana, I. W. Ardika, and I. N. Darma Putra, “Pengembangan pusat kota Denpasar sebagai heritage tourism,” Jurnal Master Pariwisata, vol. 4, no. 1, pp. 62–77, 2017.

W. Ika and A. M. Wibowo, “Prasasti anjuk ladang di Nganjuk Jawa Timur (sejarah dan potensinya sebagai sumber pembelajaran sejarah),” Jurnal Sejarah dan Pembelajarannya, vol. 7, no. 1, pp. 82–103, 2017. doi: 10.25273/ajsp.v7i01.1062

S. T. Rasmana, “Letter segmentation of the ancient copper inscriptions using texture-based,” Doctoral thesis, Institut Teknologi Sepuluh Nopember, Indonesia, 2017.

I. K. D. Setiawan, S. T. Rasmana, and M. C. Wibowo, “Analisis fitur citra prasasti logam menggunakan metode gray level run length matrix,” Journal of Control and Network Systems, vol. 4, no. 1, pp. 22–30, 2015.

A. Hidayat and R. N. Shofa, “Self organizing maps (SOM) suatu metode untuk pengenalan aksara Jawa,” Jurnal Siliwangi Seri Sains dan Teknologi, vol. 2, no. 1, pp. 64-70, 2016.

T. Arifianto, “Segmentation character of character Java use adaptive threshold,” M. Eng. Thesis, Institut Teknologi Sepuluh Nopember, Indonesia, 2016.

E. P. Purwandari, R. U. Hasibuan, and D. Andreswari, “Identifikasi jenis bambu berdasarkan tekstur daun dengan metode gray level co-occurrence matrix dan gray level run length matrix,” Jurnal Teknologi dan Sistem Komputer, vol. 6, no. 4, pp. 146-151, 2018. doi: 10.14710/ jtsiskom.6.4.2018.146-151

M. M. Galloway, “Texture analysis using gray level run lengths,” Computer Graphics and Image Processing, vol. 4, no. 2, pp. 172-179, 1975. doi: 10.1016/S0146-664X(75)80008-6

N. Neneng, K. Adi, and R. Isnanto, “Support vector machine untuk klasifikasi citra jenis daging berdasarkan tekstur menggunakan ekstraksi ciri gray level co-occurrence matrices (GLCM),” Jurnal Sistem Informasi Bisnis, vol. 6, no. 1, pp. 1–10, 2016. doi: 10.21456/vol6iss1pp1-10

D. J. Bora, A. K. Gupta, and F. A. Khan, “Comparing the performance of L*A*B* and HSV color spaces with respect to color image segmentation,” arXiv:1506.01472 [cs.CV], 2015.

R. P. Rakhmawati, “Sistem deteksi jenis bunga menggunakan nilai HSV dari citra mahkota bunga,” Bachelor thesis, Universitas Stikubank, Indonesia, 2013.

O. R. Indriani, E. J. Kusuma, C. A. Sari, E. H. Rachmawanto, and D. R. I. M. Setiadi, "Tomatoes classification using K-NN based on GLCM and HSV color space," in International Conference on Inovative and Creative Information Technology, Salatiga, Indonesia, Nov. 2017, pp. 1-6. doi: 10.1109/INNOCIT.2017.8319133

A. Wedianto, H. L. Sari, and Y. S. H, “Analisa perbandingan metode filter gaussian, mean dan median terhadap reduksi noise,” Jurnal Media Infotama, vol. 12, no. 1, pp. 21–30, 2016.




DOI: https://doi.org/10.14710/jtsiskom.8.2.2020.94-99

Copyright (c) 2020 Jurnal Teknologi dan Sistem Komputer

Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.