Sampled and Discretized of Short-time Fourier Transform and Non-negative Matrix Factorization: Single-Channel Source Separation

*Jans Hendry orcid scopus  -  Dept. of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Indonesia
Isnan Nur Rifai  -  Dept. of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Indonesia
Subari Subari  -  Dept. of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Indonesia
Received: 5 Aug 2020; Revised: 27 Oct 2020; Accepted: 27 Nov 2020; Published: 31 Jan 2021; Available online: 7 Dec 2020.
Open Access Copyright (c) 2020 Jurnal Teknologi dan Sistem Komputer under

Citation Format:
The Short-time Fourier transform (STFT) is a popular time-frequency representation in many source separation problems. In this work, the sampled and discretized version of it what’s called Discrete Gabor transform (DGT) is proposed to replace STFT within single-channel source separation problem of Non-negative Matrix Factorization (NMF) framework. The result shows that NMF-DGT is better than NMF-STFT according to Signal-to-Interference Ratio, Signal-to-Artifact Ratio, and Signal-to-Distortion Ratio in supervised scheme which are 18.60 dB vs 16.24 dB, 13.77 dB vs 13.69 dB, and 12.45 dB vs 11.16 dB as well as unsupervised scheme which are 0.40 dB vs 0.27 dB, -10.21 dB vs -10.36 dB, and -15.01 dB vs -15.23 dB, respectively.
Keywords: DGT; STFT; NMF; time-frequency representation; single-channel source separation

Article Metrics:

  1. M. F. Issa and Z. Juhasz, “Improved EOG Artifact Removal Using Wavelet Enhanced Independent Component Analysis,” Brain Sciences, vol. 9, no. 12, December 2019, pp. 355. doi: 10.3390/brainsci9120355
  2. A. Ghazdali, A. Hakim, A. Laghrib, N. Mamouni, and S. Raghay, “A New Method for The Extraction of Fetal ECG from The Dependent Abdominal Signals Using Blind Source Separation and Adaptive Noise Cancellation Techniques,” Theoritical Biology and Medical Modelling, vol. 12, no. 25, November 2015. doi: 10.1186/s12976-015-0021-2
  3. H. Qi, Z. Guo, X. Chen, Z. Shen, Z. J. Wang, "Video-based Human Heart Rate Measurement Using Joint Blind Source Separation," Biomedical Signal Processing and Control, vol. 31, January 2017, pp. 309-320. doi: 10.1016/j.bspc.2016.08.020
  4. M. Maazaoui, K. Abed-Meraim, and Y. Grenier, “Blind Source Separation for Robot Audition Using Fixed HRTF Beamforming,” EURASIP Journal on Advances in Signal Processing, no. 58 (2012), March 2012. doi: 10.1186/1687-6180-2012-58
  5. H. Lee, “Simultaneous Blind Separation and Recognition of Speech Mixtures Using Two Microphones to Control a Robot Cleaner,” International Journal of Advanced Robotic Systems, vol. 10, no. 2, May 2017, doi: 10.5772/55408
  6. K. Zhang, G. Tian, and T. Lan, “Blind source separation based on JADE algorithm and application,” in The 3rd International Conference on Mechatronics, Robotics and Automation, Atlantis Press, April 2015, pp. 252-255. doi: 10.2991/icmra-15.2015.50
  7. C-Y. Yu, Y. Li, B. Fei, and W-L. Li, “Blind Source Separation Based X-ray Image Denoising from an Image Sequence,” Review of Scientific Instruments, vol. 86, no. 9, August 2015, doi: 10.1063/1.4928815
  8. Md. M. Hossain, B. E. Levy, D. Thapa, A. L. Oldenburg, and C. M. Gallippi, “Blind Source Separation-Based Motion Detector for Imaging Super-Paramagnetic Iron Oxide (SPIO) Particles in Magnetomotive Ultrasound Imaging,” IEEE Transactions on Medical Imaging, vol. 37, no. 10, June 2018, pp. 2356 - 2366. doi: 10.1109/TMI.2018.2848204
  9. R. R. Wildeboer, F. Sammali, R. J. G. van Sloun, Y. Huang, P. Chen, M. Bruce, C. Rabotti, S. Shulepov, G. Salomon, B. C. Schoot, H. Wijkstra, M. Mischi, “Blind Source Separation for Clutter and Noise Suppression in Ultrasound Imaging: Review for Different Applications,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 8, February 2020, pp. 1497-1512. doi: 10.1109/TUFFC.2020.2975483
  10. K. Yoshii, R. Tomioka, D. Mochihashi, M. Goto, “Beyond NMF: Time-Domain Audio Source Separation Without Phase Reconstruction,” in The 14th International Society for Music Information Retrieval Conference (ISMIR), 2013. doi: 10.5281/zenodo.1415060
  11. M. N. Schmidt, “Single-channel Source Separation Using Non-negative Matrix Factorization,” Phd thesis, Technical University of Denmark, DTU Informatics, January 2009
  12. Y. Li, Y. Wang, and Q. Dong, “A Novel Mixing Matrix Estimation Algorithm in Instantaneous Underdetermined Blind Source Separation,” Signal, Image and Video Processing, vol. 14, January 2020, pp. 1001-1008 (2020). doi: 10.1007/s11760-019-01632-z
  13. Y. Zhang, Z. Zhang, H. Tao, and Y. Lin, “A Single Source Point Detection Algorithm for Underdetermined Blind Source Separation Problem,” in ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019, S. Liu and G. Yang (Eds.): ADHIP 2018, LNICST 279, 2019, pp. 68–76. doi: 10.1007/978-3-030-19086-6_8
  14. W. Guan, L. Dong, Y. Cai, J. Yan, and Y. Han, “Sparse component analysis with optimized clustering for underdetermined blind modal identification,” Measurement Science and Technology, IOP Publishing, vol. 30, September 2019. doi: 10.1088/1361-6501/ab3054
  15. H. Zhang, G. Hua, L. Yu, Y. Cai, and G. Bi, “Underdetermined Blind Separation of Overlapped Speech Mixtures in Time-Frequency Domain with Estimated Number of Sources,” Speech Communication, vol. 89, pp. 1-16, May 2017. doi: 10.1016/j.specom.2017.02.003
  16. T. Peng, Y. Chen, and Z. Liu, “A Time–Frequency Domain Blind Source Separation Method for Underdetermined Instantaneous Mixtures,” Circuits System Signal Processing, vol. 34, pp. 3883-3895 (2015), March 2015. doi: 10.1007/s00034-015-0035-3
  17. H. Sawada, R. Mukai, S. Araki, and S. Makino, “Convolutive blind source separation for more than two sources in the frequency domain,” Acoustical Science and Technology, vol. 25, no. 4, 2004. doi: 10.1109/ICASSP.2004.1326687
  18. M. Jafari, E. Vincent, S. Abdallah, M. Plumbley, and M. Davies, “Blind Source Separation of Convolutive Audio Using an Adaptive Stereo Basis,” UK ICA Research Network Workshop, Southampton, United Kingdom, September 2006. Available: [Accessed: August 2, 2020]
  19. T. Asamizu, S. Saito, K. Oishi, and T. Furukawa, “Overdetermined Blind Source Separation Using Approximate Joint Diagonalization,” in IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, October 2017. doi: 10.1109/MWSCAS.2017.8052887
  20. L. Wang, J. D. Reiss, and A. Cavallaro, “Over-Determined Source Separation and Localization Using Distributed Microphones,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no. 9, September 2016. doi: 10.1109/TASLP.2016.2573048
  21. K. Yatabe, Y. Masuyama, T. Kusano, and Y. Oikawa, "Representation of complex spectrogram via phase conversion," in Acoustical Science and Technology, vol. 40, no. 3, 2019. doi: 10.1250/ast.40.170
  22. H. G. Feichtinger and T. Strohmer, Eds., Gabor Analysis and Algorithms: Theory and Applications. Birkhäuser, Boston, 1998
  23. Z. Průša, “STFT and DGT phase conventions and phase derivatives interpretation,” The Large Time-Frequency Analysis Toolbox (LTFAT Notes), 2016. Available: ltfatnote042.pdf. [Accessed: July 29, 2020]
  24. S. A. Rafiei, H. Sheikhzadeh, and M. Sabbaqi, “A New Reduced-Interference Source Separation Method Based on a Complementary Combination of Masking Algorithm and Mixing Matrix Estimation,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, February 2020, doi: 10.1007/s40998-020-00326-4
  25. D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Proceedings of Advances in Neural Processing Information Systems, MIT Press, 2001, pp. 556-562
  26. M. W. Berry, M. Brown, A. N. Langville, V. P. Pauca, R. J. Plemmons, ”Algorithms and Applications for Approximate Nonnegative Matrix Factorization,” Computational Statistics & Data Analysis, vol. 52, no. 1, 2007, pp. 155-173. doi: 10.1016/j.csda.2006.11.006
  27. A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Networks, vol. 13, no. 4-5, June 2000, pp. 411-430. doi: 10.1016/S0893-6080(00)00026-5
  28. A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Trans Neural Network, vol. 10, no. 3, 1999, pp. 626-634. doi: 10.1109/72.761722
  29. J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L. Dahlgren, V. Zue, “TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1,” Web Download. Philadelphia: Linguistic Data Consortium, 1993
  30. E. Vincent, S. Araki, F.J. Theis, G. Nolte, P. Bofill, H. Sawada, A. Ozerov, B. V. Gowreesunker, D. Lutter, and N. Q. K. Duong, “The Signal Separation Evaluation Campaign (2007-2010): Achievements and remaining challenges,” Signal Processing, vol. 92, issue 8, August 2012, pp. 1928-1936. doi: 10.1016/j.sigpro.2011.10.007
  31. M. I. Mandel, S. Bressler, B. Shinn-Cunningham, and D. P. W. Ellis, "Evaluating Source Separation Algorithms With Reverberant Speech," IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 7, September 2010. doi: 10.1109/TASL.2010.2052252

Last update: 2021-03-08 06:58:32

No citation recorded.

Last update: 2021-03-08 06:58:34

No citation recorded.