Identification of fat-soluble vitamins deficiency using artificial neural network

*Noviyanti Sagala scopus  -  Department of Information System, Faculty of Computer Science and Engineering, Krida Wacana Christian University, Indonesia
Cynthia Hayat orcid scopus  -  Department of Information System, Faculty of Computer Science and Engineering, Krida Wacana Christian University, Indonesia
Frahselia Tandipuang  -  Department of Information System, Faculty of Computer Science and Engineering, Krida Wacana Christian University, Indonesia
Received: 29 Apr 2019; Revised: 14 Oct 2019; Accepted: 17 Oct 2019; Published: 31 Jan 2020; Available online: 5 Nov 2019.
Open Access Copyright (c) 2020 Jurnal Teknologi dan Sistem Komputer
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Article Info
Section: Original Research Articles
Language: EN
Statistics: 310 80
Abstract
The fat-soluble vitamins (A, D, E, K) deficiency remain frequent universally and may have consequential adverse resultants and causing slow appearance symptoms gradually and intensify over time. The vitamin deficiency detection requires an experienced physician to notice the symptoms and to review a blood test’s result (high-priced). This research aims to create an early detection system of fat-soluble vitamin deficiency using artificial neural network Back-propagation. The method was implemented by converting deficiency symptoms data into training data to be used to produce a weight of ANN and testing data. We employed Gradient Descent and Logsig as an activation function. The distribution of training data and test data was 71 and 30, respectively. The best architecture generated an accuracy of 95 % in a combination of parameters using 150 hidden layers, 10000 epoch, error target 0.0001, learning rate 0.25.
Keywords: deficiency early diagnose; fat-soluble vitamin deficiency; neural network; back-propagation

Article Metrics:

  1. M. Khosravi-Largani et al.,“A review on potential roles of vitamins in incidence, progression, and improvement of multiple sclerosis,” eNeurologicalSci, vol. 10, pp. 37-44, 2018. doi: 10.1016/j.ensci.2018.01.007
  2. M. S. Almetwazi, A. O. Noor, D. M. Almasri, I. Popovici, T. Alhawassi, K. A. Alburikan, and C. A. Harrington, “The association of vitamin d deficiency and glucose control among diabetic patients,” Saudi Pharmaceutical Journal, vol. 25, no. 8, pp. 1179-1183, 2017. doi: 10.1016/j.jsps.2017.09.001
  3. P. Ravisankar, A. A. Reddy, B. Nagalakshmi, O. S. Koushik, B. V. Kumar, and P. S. Anvith, “The comprehensive review on fat soluble vitamins,” IOSR Journal of Pharmacy, vol.5, no. 11, pp. 12-28, 2015.
  4. A. A. Albahrani and R. F. Greaves, “Fat-soluble vitamins: clinical indications and current challenges for chromatographic measurement,” The Clinical biochemistry Reviews, vol. 37, no. 1, pp. 27-47, 2016.
  5. National Research Council (US) Subcommittee on the Tenth Edition of the Recommended Dietary Allowances, Recommended Dietary Allowances: 10th Edition. Washington (DC): National Academies Press (US), 1989.
  6. A. Labellapansa and A. T. Boyz, “Sistem pakar diagnosa dini defisiensi vitamin dan mineral,” Jurnal Informatika, vol. 10, no. 1, pp. 1156–1163, 2016.
  7. N. Sevani and M. Joshua, “Implementasi forward chaining untuk diagnosa defisiensi vitamin larut dalam lemak berbasiskan web,” Jurnal Teknologi Komputer dan Informatika, vol. 10, no. 2, pp. 51– 59, 2014. doi: 10.21460/inf.2014.102.293
  8. F. Sayfria, B. Iqbal, E. Budianita, and I. Afrianty, “Implementation of backpropagation neural network to detect suspected lung disease,” Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), vol.1, no.1, pp.32-40, 2018. doi: 10.24014/ijaidm.v1i1.5023
  9. H. H. Örkcü and H. Bal, "Comparing performances of backpropagation and genetic algorithms in the data classification," Expert Systems with Applications, vol.38, no.4, pp. 3703–3709, 2011. doi: 10.1016/j.eswa.2010.09.028
  10. I. Y. Khan, P. H. Zope, and S.R. Suralkar, “Importance of artificial neural network in medical diagnosis disease like acute nephritis disease and heart disease,” International Journal of Engineering Science and Innovative Technology (IJESIT), vol. 2, vo.2, pp. 210-217, 2013.
  11. I. A. Basheer and M. Hajmeer, "Artificial neural networks: fundamentals, computing, design, and application," Journal of Microbiological Methods, vol. 43, no.1, pp. 3-31, Dec 2000. doi: 10.1016/S0167-7012(00)00201-3
  12. F. Novadiwanti, A. Buono, and A. Faqih, “Prediksi awal musim hujan di kabupaten Pacitan menggunakan optimasi cascade neural network (CNN) dengan genetic algorithm (GA) berdasarkan data GCM,” Jurnal Tanah dan Iklim, vol. 41, no. 1, pp. 69-77, 2017.

No citation recorded.