Department of Informatics, STMIK Global Informatika MDP Palembang, Indonesia
BibTex Citation Data :
@article{JTSISKOM12992, author = {Derry Alamsyah}, title = {Maximum Likelihood Classification dengan Ekstraksi Fitur Fast Fourier Transform untuk Pengenalan Mobil}, journal = {Jurnal Teknologi dan Sistem Komputer}, volume = {6}, number = {1}, year = {2018}, keywords = {Fast fourier transform; maximum likelihood classification; car recognition}, abstract = { The car recognition is part of the field of traffic surveillance on the image. In general, the car recognition using the form-based feature as a unique feature. Another feature in object recognition is the frequency feature. One feature of frequency is the Fourier feature, this feature is obtained by using Fast Fourier Transform (FFT) method. The object recognition can be done by determining the maximum value of likelihood and classifying it with Maximum Likelihood Classification (MLC). The use of FFT and MLC in the car object recognition has never been used. The results of both are in a good accuracy that is 76%. }, issn = {2338-0403}, pages = {32--36} doi = {10.14710/jtsiskom.6.1.2018.32-36}, url = {https://jtsiskom.undip.ac.id/article/view/12992} }
Refworks Citation Data :
The car recognition is part of the field of traffic surveillance on the image. In general, the car recognition using the form-based feature as a unique feature. Another feature in object recognition is the frequency feature. One feature of frequency is the Fourier feature, this feature is obtained by using Fast Fourier Transform (FFT) method. The object recognition can be done by determining the maximum value of likelihood and classifying it with Maximum Likelihood Classification (MLC). The use of FFT and MLC in the car object recognition has never been used. The results of both are in a good accuracy that is 76%.
Article Metrics:
Last update:
Last update: 2024-12-11 10:04:32
Starting from 2021, the author(s) whose article is published in the JTSiskom journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JTSiskom, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JTSiskom will not be held responsible for anything arising because of the writer's internal dispute. JTSiskom will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JTSiskom allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JTSiskom to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.