skip to main content

Aspect-Based Analysis of Telkomsel User Sentiment on Twitter Using the Random Forest Classification Method and Glove Feature Expansion

Faculty informatics school of computing, Telkom University, Indonesia

Received: 6 Sep 2021; Published: 30 Apr 2022.
Open Access Copyright (c) 2022 Aditya Mahendra Zakaria
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
In this modern era, people certainly very easy to access social media, one of which is Twitter. Twitter is usually used by the public in expressing opinions regarding current issues, product reviews, and many other things positive, negative, or neutral opinions, or can be interpreted as sentiment. This study aims to analyze the aspect-based sentiment of Telkomsel users on Twitter using random forest classification and the extension of the Glove feature. This study uses signal aspects and service aspects with a total dataset of 16988 data. A Random forest can be classified as relevant and accurate for sentiment analysis with the greatest accuracy of 80.37% in the signal aspect and 80.12% in the service aspect, and the expansion feature is proven to be able to increase the performance value of this study by 13.15% in the signal aspect. and 5.37% in the service aspect.
Keywords: sentiment analysis, classification, twitter , random forest , glove feature expansion
Funding: Universitas Telkom

Article Metrics:

  1. Emasriani, Felyta, and R. Rahmadewi. "Analisa Efektifitas Perbaikan Perangkat BTS Telkomsel Karawang dengan iManager u2000 software", Jurnal Ilmiah Pendidikan Teknik Elektro Vol.5. No. 2 pp. 148-154, 2021. doi : https://doi.org/10.51903/elkom.v14i1.415
  2. N. Monarizqa, L.E. Nugroho, and B.S. Hantono. “Penerapan Analisis Sentimen Pada Twitter Berbahasa Indonesia Sebagai Pemberi Rating”, Jurnal Penelitian Teknik Elektro dan Teknologi Informasi, Vol. 1, pp. 151–155, 2014
  3. Amiarrahman, M. Rafi, T. Handhika. “Analisis dan Implementasi Algoritma Klasifikasi Random Forest Dalam Pengenalan Bahasa Isyarat Indonesia”. Prosiding Seminar Nasional Inovasi Teknologi, Vol. 2, No. 1, pp 083-088, 2018. doi : https://doi.org/10.29407/inotek.v2i1.461
  4. E.B. Setiawan, D.H. Widyantoro and K. Surendro, "Feature Expansion for Sentiment Analysis in Twitter," 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics . IEEE, Malang, Indonesia, 2018 pp. 509-513, doi: 10.1109/EECSI.2018.8752851
  5. V.A. Fitri, N. Andreswari, A.M. Hasibuan, “Sentiment Analysis of Social Media Twitter with Case of Anti-LGBT Campaign in Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm,” Procedia Computer Science 161. pp. 765-772, 2019. doi: https://doi.org/10.1016/j.procs.2019.11.181
  6. Alita, Debby, and A.R Isnain. "Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier." Jurnal Komputasi, Vol. 8, No. 2, pp 50-58, 2020. doi: http://dx.doi.org/10.23960%2Fkomputasi.v8i2.2615
  7. Sari, E.D. Nurindah, and irhamah. "Analisis Sentimen Nasabah Pada Layanan Perbankan Menggunakan Metode Regresi Logistik Biner, Naïve Bayes Classifier (NBC), dan Support Vector Machine (SVM)." Jurnal Sains dan Seni ITS Vol. 8, No. 2, pp 177-184, 2020. doi: 10.12962/j23373520.v8i2.44565
  8. Nasution, M.R. Aziz, and M. Hayaty. "Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter." Jurnal Informatika Vol. 6, No. 2, pp 226-235, 2019. doi : https://doi.org/10.31294/ji.v6i2.5129
  9. A. Febiana, E.B Setiawan, “Hate Speech Detection on Twitter in Indonesia with Feature Expansion Using Glove” Jurnal RESTI Vol. 5, No.6 ISSN: 1044-1051, 2021. doi: https://doi.org/10.29207/resti.v5i6.3521
  10. Sreya, M.D Dharma, and E.B Setiawan. "Penggunaan Metode Glove Untuk Ekspansi Fitur Pada Analisis Sentimen Twitter Dengan Naïve Bayes Dan Support Vector Machine." eProceedings of Engineering Vol. 9, No. 3, p. 2015, Juni,2022
  11. H. Kumar, B.S. Harish, and H.K.Darshan, “Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method,” International Journal of Interactive Multimedia and Artificial Intelligence:1. Vol.5, No. 5, 2019, p.109. doi: 10.9781/ijimai.2018.12.005
  12. Nurjannah, Musfiroh, Hamdani, and I.F Astuti. "Penerapan Algoritma Term Frequency-Inverse Document Frequency (TF-IDF) untuk Text Mining." Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer Vol 8, No. 3, pp 110-113 2016. doi : http://dx.doi.org/10.30872/jim.v8i3.113
  13. L. Breiman, “Random forests,” Machine. Learning 45(1) p. 5-32, October 2001. doi : https://doi.org/10.1023/A:1010933404324
  14. T.K Ho, "Random decision forests," Proceedings of 3rd International Conference on Document Analysis and Recognition, 1995, pp. 278-282 vol.1, Montreal, QC, Canada doi: 10.1109/ICDAR.1995.598994.
  15. C.R. Sekhar, Minal, and E. Madhu, “Mode Choice Analysis Using Random Forrest Decision Trees,” in Transportation Research Procedia, 2016, p. 6, doi: 10.1016/j.trpro.2016.11.119
  16. Raji, I. .Damilola, et al. "Simple deterministic selection-based genetic algorithm for hyperparameter tuning of machine learning models." Applied Sciences Vol.12, No. 3, p. 1186, 2022. doi : https://doi.org/10.3390/app12031186
  17. Priyadarshini, Ishaani, and C. Cotton. "A novel LSTM–CNN–grid search-based deep neural network for sentiment analysis." The Journal of Supercomputing Vol. 77, No. 12, pp 13911-13932, 2021. doi : https://doi.org/10.1007/s11227-021-03838-w
  18. A. Luque, A. Carrasco, A. Martín, and A.D.L Heras, “The impact of class imbalance in classification performance metrics based on the binary confusion matrix,” Pattern Recognit., vol. 91, pp. 216–231, 2019, doi: 10.1016/j.patcog.2019.02.023
  19. L. Demidova and I. Klyueva, "SVM classification: Optimization with the SMOTE algorithm for the class imbalance problem," 2017 6th Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro, 2017, pp. 1-4, doi: 10.1109/MECO.2017.7977136.
  20. R.D. Himawan, Eliyani “Perbandingan Akurasi Analisis Sentimen Tweet terhadap Pemerintah Provinsi DKI Jakarta di Masa Pandemi”. Jurnal Edukasi dan Penelitian Informatika, vol. 7, no. 1, April 2021. ISSN(e): 2548-9364 / ISSN(p) : 2460-074. doi : http://dx.doi.org/10.26418/jp.v7i1.41728
  21. A. Gormantara “Analisis Sentimen Terhadap New Normal Era di Indonesia pada Twitter Menggunakan Metode Support Vector Machine”. Konferens Nasional Ilmu Komputer (KONIK) 2020, APTIKOM, Sulawesi Tenggara, Indonesia, ISSN : 2338-2899

Last update:

No citation recorded.

Last update: 2025-01-21 19:10:22

No citation recorded.