skip to main content

Perbandingan Algoritma C4.5 dan CART dalam Memprediksi Kategori Indeks Prestasi Mahasiswa

Accuracy Comparison of C4.5 and CART Algorithms in Predicting Student Achievement Index Category

Department of Informatics, Universitas Kristen Duta Wacana, Indonesia

Received: 19 Mar 2018; Published: 28 Apr 2018.
Open Access Copyright (c) 2018 Jurnal Teknologi dan Sistem Komputer
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This research compared the accuracy of prediction of Grade Point Average (GPA) of the first semester students using C4.5 and CART algorithms in Faculty of Information Technology (FTI), Universitas Kristen Duta Wacana (UKDW). This research also explored various parameters such as numeric attribute categorization, data balance, GPA categories number, and different attributes availability due to the difference of data availability between Achievement Admission (AA) and Regular Admission (RA). The training data used to create decision tree were FTI students, 2008-2015 batch, while the testing data were FTI students, 2016 batch. The accuracy of prediction was measured by using crosstab table. In AA, the accuracy of both algorithms can be achieved about 86.86%. Meanwhile, in RA the accuracy of C4.5 is about 61.54% and CART is about 63.16%. From these accuracy result, both algorithms are better to predict AA rather than RA.

Keywords: data mining accuracy; student grade prediction; prediction algorithms comparison

Article Metrics:

  1. R. G. Santosa and A. R. Chrismanto, "Logistic Regression Model for Predicting First Semester Students Gpa Category Based on High School Academic Achievement," Journal of Arts, Science & Commerce, vol. VIII, no. 2(1), pp. 58–66, April 2017
  2. D. Indriana, A. I. Widowati, and S. Surjawati,"Faktor-Faktor yang Mempengaruhi Prestasi Akademik: Studi Kasus pada Mahasiswa Program Studi Akuntansi Universitas Semarang," Jurnal Dinamika Sosial Budaya, vol. 18, no. 1, pp. 39-48, Juni 2016
  3. D. Untari, "Data Mining Untuk Menganalisa Prediksi Mahasiswa Berpotensi Non-Aktif Menggunakan Metode Decision Tree C4.5," Skripsi, Universitas Dian Nuswantoro, Semarang, 2014 [Online]. Available: http://eprints.dinus.ac.id/ 13181/
  4. D. H. Kamagi and S. Hansun, "Implementasi Data Mining dengan Algoritma C4.5 untuk Memprediksi Tingkat Kelulusan Mahasiswa," Ultimatics, vol. VI, no. 1, pp. 15–20, Juni 2014
  5. R. G. Santosa and A. R. Chrismanto, "Perbandingan Akurasi Model Regresi Logistik Untuk Prediksi Kategori IP Mahasiswa Jalur Prestasi dengan Non Jalur Prestasi," Jurnal Teknik dan Ilmu Komputer, vol. 7, no. 25, pp. 107–121, Januari 2018
  6. V. H. A. Sari, R. G. Santosa, and A. Rachmat, "Perbandingan Algoritma K-Nearest Neighbor dan Naïve Bayes Classifier dalam Memprediksi Kategori Indeks Prestasi Mahasiswa," Laporan tidak dipublikasi, 2017
  7. T. Aprilia, N. Gusriani, and K. Parmikanti, "Klasifikasi Ketepatan Masa Studi Mahasiswa FMIPA Unpad Angkatan 2001-2006 dengna Menggunakan Metode Classification and Regression Trees (CART)," Jurnal Matematika Integratif, vol. 11, no. 1, pp. 7-14, April 2015
  8. I. Rahmayuni, "Perbandingan Performansi Algoritma C4.5 dan CART Dalam Klasifikasi Data Nilai Mahasiswa Prodi Teknik Komputer Politeknik Negeri Padang," Jurnal TEKNOIF, vol. 2, no. 1, pp. 40–46, April 2014
  9. T. M. Lakshmi, A. Martin, R. M. Begum, and V. P. Venkatesan, "An Analysis on Performance of Decision Tree Algorithms using Student’s Qualitative Data," International Journal of Modern Education and Computer Science, vol. 5, no. 5, pp. 18–27, 2013
  10. C. Brooks, Entreprise NoSQL For Dummies. John Wiley & Sons, Inc, 2014
  11. S. Gavankar and S. Sawarkar, "Decision Tree: Review of Techniques for Missing Values at Training, Testing and Compatibility," in Proc. of 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS 2015), Malaysia, Dec. 2-4, 2015, pp. 122–126

Last update:

  1. Prediksi kelulusan tepat waktu mahasiswa untuk pemantauan program studi menggunakan metode data mining

    Seprima Rachardian, Eko Sediyono. AITI, 21 (2), 2024. doi: 10.24246/aiti.v21i2.168-182
  2. Classification and Prediction of Students’ GPA Using K-Means Clustering Algorithm to Assist Student Admission Process

    Raden Gunawan Santosa, Yuan Lukito, Antonius Rachmat Chrismanto. Journal of Information Systems Engineering and Business Intelligence, 7 (1), 2021. doi: 10.20473/jisebi.7.1.1-10
  3. Classification and Prediction of Students’ GPA Using K-Means Clustering Algorithm to Assist Student Admission Process

    Raden Gunawan Santosa, Yuan Lukito, Antonius Rachmat Chrismanto. Journal of Information Systems Engineering and Business Intelligence, 7 (1), 2021. doi: 10.20473/jisebi.7.1.1-10

Last update: 2024-12-21 21:00:21

No citation recorded.