skip to main content

Peramalan kekuatan gerak tangan menggunakan Extreme Learning Machine untuk terapi pasca-stroke

Hand motion strength forecasting using Extreme Learning Machine for post-stroke rehabilitation

Department of Electrical Engineering, Universitas Jember. Jl. Kalimantan No. 37, Kampus Tegalboto, Jember, Indonesia 68121, Indonesia

Received: 27 Jul 2020; Revised: 12 Jan 2021; Accepted: 18 Jan 2021; Published: 30 Apr 2021; Available online: 20 Apr 2021.
Open Access Copyright (c) 2021 Jurnal Teknologi dan Sistem Komputer
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Stroke or Cerebrovascular accident (CVA) can cause weakness in one side of the body, including the upper limbs such as the hand. Rehabilitation is needed to restore the function of the hand. Rehabilitation should also measure the strength of the movements carried out. This article aims to forecast the strength of movement based on Electromyography (EMG) signals using the Extreme Learning Machine (ELM). This study collected EMG signal data and movement strength, carried out data pre-processing and data extraction using various extraction features, applied ELM for forecasting strength based on EMG signals, and applied created models in stroke therapy robots. The forecasting model is evaluated by measuring the Mean Squared Error (MSE). The average value of the best MSE in offline testing is 1.77, while the real-time testing is 0.79. A small MSE value indicates that the model is good enough. The resulted value of strength can be applied to make the stroke therapy robots actuating properly.

Note: This article has supplementary file(s).

Fulltext View|Download |  Ethic Aproval
Ethic Committee Approval
Subject Ethical approval for "Peramalan kekuatan gerak tangan menggunakan Extreme Learning Machine untuk terapi pasca-stroke"
Type Ethic Aproval
  Download (1MB)    Indexing metadata
Keywords: electromyography; Extreme Learning Machine; forecasting; hand-robot; stroke rehabilitation
Funding: Universitas Jember

Article Metrics:

  1. Y. Yuyun, Pencitraan pada stroke. Malang, 2016
  2. Graeme J. Hankey, Stroke: your questions answered. Edinburg: Churchill Livingstoke, 2015
  3. F. B. Batticaca, Asuhan keperawatan pada klien dengan gangguan sistem persarafan. Jakarta: Salemba Medika, 2008
  4. J. R. Suwantara, “Depresi pasca-stroke: epidemiologi, rehabilitasi dan psikoterapi,” Jurnal Kedokteran Trisakti, vol. 23, no. 4, pp. 150–156, 2004
  5. P. Langhorne, J. Bernhardt, and G. Kwakkel, “Stroke rehabilitation,” The Lancet, vol. 377, no. 9778, pp. 1693-1702, 2011. doi: 10.1016/S0140-6736(11)60325-5
  6. J. R. O. Hariandja, “Teknologi terjangkau untuk penderita stroke di Indonesia,” Research Report – Engineering Science, vol. 6, no. 3, pp. 1–31, 2013
  7. K. Gui, H. Liu, and D. Zhang, “A practical and adaptive method to achieve EMG-based torque estimation for a robotic exoskeleton,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 2, pp. 483-494, 2019. doi: 10.1109/TMECH.2019.2893055
  8. K. Anam, Sistem kontrol robot untuk rehabilitasi. Jember: UTP Percetakan dan Penerbitan Universitas Jember, 2019
  9. J. L. Pons, “Rehabilitation exoskeletal robotics,” IEEE Engineering in Medicine and Biology Magazine, vol. 29, no. 3, pp. 57–63, 2010. doi: 10.1109/MEMB.2010.936548
  10. P. V. Komi, P. Tesch, V. Komi, and P. Tesch, “EMG Frequency Spectrum , Muscle Structure , and Fatigue,” European Journal of Appllied Physiology and Occupational Physiology, vol. 42, pp. 41–50, 1979. doi: 10.1007/BF00421103
  11. D. Leonardis et al., “An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation,” IEEE Transactions on Haptics, vol. 8, no. 2, 2015. doi: 10.1109/TOH.2015.2417570
  12. J. A. Opara and K. Jaracz, “Quality of life of post-stroke patients and their caregivers,” Journal of Medicine and Life, vol. 3, no. 3, pp. 216–220, 2010
  13. N. S. K. Ho et al., “An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: Task training system for stroke rehabilitation,” in IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, Jul. 2011, pp. 1-5. doi: 10.1109/ICORR.2011.5975340
  14. M. Chen, L. Cheng, F. Huang, Y. Yan, and Z. G. Hou, “Towards robot-assisted post-stroke hand rehabilitation: Fugl-meyer gesture recognition using sEMG,” in Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Honolulu, USA, Aug. 2018. pp. 1472–1477. doi: 10.1109/CYBER.2017.8446436
  15. K. Anam, A. A. Rosyadi, B. Sujanarko, and A. Al-Jumaily, “Myoelectric control systems for hand rehabilitation device: A review,” in International Conference on Electrical Engineering, Computer Science and Informatics, Yogyakarta, Indonesia, Sept. 2017, pp. 1-6. doi: 10.1109/EECSI.2017.8239091
  16. L. Bi, A. Feleke, and C. Guan, “A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration,” Biomedicatl Signal Processing and Control, vol. 51, pp. 113–127, 2019. doi: 10.1016/j.bspc.2019.02.011
  17. S. Suyanto, Machine learning tingkat dasar dan lanjut. Bandung: Informatika Bandung, 2018
  18. H. Cao, S. Sun, and K. Zhang, “Modified EMG-based handgrip force prediction using extreme learning machine,” Soft Computing, vol. 21, no. 2, pp. 491–500, 2017. doi: 10.1007/s00500-015-1800-8
  19. K. Anam and A. Al-Jumaily, “Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees,” Neural Networks, vol. 85, pp. 51–68, 2017. doi: 10.1016/j.neunet.2016.09.004
  20. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, 2006. doi: 10.1016/j.neunet.2016.09.004
  21. D. R. Freer, J. Liu, and G. Z. Yang, “Optimization of EMG movement recognition for use in an upper limb wearable robot,” in 14th International Conference on Wearable and Implantable Body Sensor Networks, Endhoven, Netherlands, May 2017, pp. 202–205. doi: 10.1109/BSN.2017.7936041
  22. Z. Arief, I. A. Sulistijono, and R. A. Ardiansyah, “Comparison of five time series EMG features extractions using Myo Armband,” in International Electronics Symposium, Surabaya, Indonesia, Sept. 2015, pp. 11–14. doi: 10.1109/ELECSYM.2015.7380805
  23. A. Rahagiyanto, “Identifikasi ekstraksi fitur untuk gerakan tangan dalam bahasa isyarat (SIBI) menggunakan sensor MYO Armband,” MATRIK Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 19, no. 1, pp. 127–137, 2019. doi: 10.30812/matrik.v19i1.510
  24. D. A. R. Wati, Sistem kendali cerdas. Yogyakarta, 2011
  25. G. Bin Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: A new learning scheme of feedforward neural networks,” in IEEE International Joint Conference on Neural Networks, Budapest, Hungary, Jul. 2004, pp. 985–990. doi: 10.1109/IJCNN.2004.1380068
  26. M. A. R. Nst, M. Zarlis, and Z. Situmorang, “Analisis perbandingan online dan offline training pengenalan huruf abjad,” Jurnal Nasional Informatika dan Teknologi Jaringan, vol. 2, no. 1, pp. 49–59, 2017. doi: 10.30743/infotekjar.v2i1.169
  27. K. R. Mills, “The basics of electromyography,” Journal of Neurology, Neurosurgery &Psychiarty, vol. 76, no. 2, pp. 32–35, 2005. doi: 10.1136/jnnp.2005.069211

Last update: 2021-07-23 03:23:52

No citation recorded.

Last update: 2021-07-23 03:23:54

No citation recorded.