- S. Tsuchimine, J. Saruwatari, A. Kaneda, and N. Yasui-Furukori, “ABO blood type and personality traits in healthy Japanese subjects,” PLoS One, vol. 10, no. 5, pp. 1-10, 2015. doi: 10.1371/journal.pone.0126983
- A. Nahida, N. Chatterjee, and C. A. Nahida, “A study on relationship between blood group and personality,” International Journal of Home Sciences, vol. 2, no. 21, pp. 239–243, 2016
- C. Y. Lee and S. Chin, “Finding EEG correlates of ABO blood types,” International Journal of Multimedia and Ubiquitous Engineering, vol. 9, no. 3, pp. 291–300, 2014
- S. Bharadwaj, S. Sridhar, R. Choudhary, and R. Srinath, “persona traits identification based on myers-briggs type indicator (MBTI) - a text classification approach,” in 2018 international conference on advances in computing, communications and informatics, bangalore, india, sept. 2018, pp. 1076–1082. doi: 10.1109/ICACCI.2018.8554828
- F. Noori and M. Kazemifard, “Simulation of pair programming using multi-agent and MBTI personality model,” in 6th International Conference of Cognitive Science, Tehran, Iran, Apr. 2015, pp. 29–36. doi: 10.1109/COGSCI.2015.7426665
- M. S. Halawa, M. E. Shehab, and E. M. R. Hamed, “Predicting student personality based on a data-driven model from student behavior on LMS and social networks,” in 5th International Conference on Digital Information Processing and Communications, Sierre, Switzerland, Oct. 2015, pp. 294–299. doi: 10.1109/ICDIPC.2015.7323044
- S. Selvi, S. Rohini, and C. Velou, “Relation between blood group and mood changes,” Indian Journal of Basic and Applied Medical Research, vol. 6, no. 3, pp. 118–125, 2017
- J. Patil et al., “Influence of blood group on the character traits - A cross-sectional study on Malaysian student population,” Journal of Chemical and Pharmaceutical Sciences, vol. 9, no. 2, pp. 865–868, 2016
- L. S. Katore and J. S. Umale, “Comparative study of recommendation algorithms and systems using WEKA,” International Journal of computer Applications, vol. 110, no. 3, pp. 14–17. doi: 10.5120/19295-0731
- Z. Zheng, Y. Cai, and Y. Li, “Oversampling method for imbalanced classification,” Computing and Informatics, vol. 34, no. 5, pp. 1017–1037, 2015
- G. N. Ramadevi, K. U. Rani, and D. Lavanya, “Evaluation of Classifiers Performance using Resampling on Breast cancer Data,” International Journal of Scientific & Engineering Research, vol. 6, no. 2, pp. 200–207, 2015
- S. Zhang et al., “Efficient knn classification with different numbers of nearest neighbors,” IEEE Transactions On Neural Networks And Learning Systems, vol. 29, no. 5, pp. 1–12, 2017. doi: 10.1109/TNNLS.2017.2673241
- Hartono, O. S. Sitompul, T. Tulus, and E. B. Nababan, “Biased support vector machine and weighted-SMOTE in handling class imbalance problem,” International Journal of Advances in Intelligent Informatics, vol. 4, no. 1, pp. 21–27, 2018. doi: 10.26555/ijain.v4i1.146
- N. Cahyana, S. Khomsah, and A. S. Aribowo, “Improving imbalanced dataset classification using oversampling and gradient boosting,” in 5th International Conference on Science in Information Technology, Yogyakarta, Indonesia, Oct. 2019, pp. 217–222. doi: 10.1109/ICSITech46713.2019.8987499
- M. Tajik, M. Malakpour, and J. G. Bidgoli, “Examine the relationship between blood groups and intercity driving jobs in Iran,” International Journal of Medical Research & Health Science., vol. 5, no. 12, pp. 292–301, 2016
- V. D. Valerio, R. M. Pereira, Y. M. G. Costa, and D. Bertolini, “A resampling approach for imbalanceness on music genre classification using spectrograms,” in International Florida Artificial Intelligence Research Society Conference (FLAIRS-31), Florida, USA, May 2018, pp. 500–505
- N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: synthetic minoriy over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, no. 1, pp. 321–357, 2002. doi: 10.1613/jair.953
- T. E. Tallo and A. Musdholifah, “The implementation of genetic algorithm in SMOTE (synthetic minority oversampling technique) for handling imbalanced dataset problem,” in 4th International Conference on Science and Technology, Yogyakarta, Indonesia, Aug. 2018, pp. 1–4. doi: 10.1109/ICSTC.2018.8528591
- H. Hairani, K. E. Saputro, and S. Fadli, “K-means-SMOTE for handling class imbalance in the classification of diabetes with C4.5, SVM, and naive Bayes,” Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 2, pp. 89–93, 2020. doi: 10.14710/jtsiskom.8.2.2020.89-93
- M. Al-Khaldy, “Resampling imbalanced class and the effectiveness of feature selection methods for heart failure dataset,” International Robotics & Automation Journal, vol. 4, no. 1, pp. 37–45, 2018. doi: 10.15406/iratj.2018.04.00090
- J. Huang, Y. Wei, J. Yi, and M. Liu, “An improved knn based on class contribution and feature weighting,” in 10th International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, Feb. 2018, pp. 313–316. doi: 10.1109/ICMTMA.2018.00083
- X. Wang, Z. Jiang, and D. Yu, “an improved knn algorithm based on kernel methods and attribute reduction,” in International Conference On Instrumentation And Measurement, Computer, Communication, And Control, Qinhuangdao, China, Sept. 2015, pp. 567–570. doi: 10.1109/IMCCC.2015.125
- A. More, “Survey of resampling techniques for improving classification performance in unbalanced datasets,” 2016, arXiv:1608.06048
- R. Batuwita and V. Palade, “Efficient resampling methods for training support vector machines with imbalanced datasets,” in International Joint Conference on Neural Networks, Barcelona, Spain, Jul. 2010, pp. 1-8. doi: 10.1109/IJCNN.2010.5596787
- A. N. Kasanah, Muladi, and U. Pujianto, “Penerapan teknik SMOTE untuk mengatasi imbalance class dalam klasifikasi objektivitas berita online menggunakan algoritma kNN,” RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 3, no. 10, pp.196-201, 2019. doi: 10.29207/resti.v3i2.945
- R. Siringoringo, “K-Nearest Neighbor pada prediksi cacat,” Journal Information System Development (ISD), vol. 2, no. 1, pp. 47–58, 2017
Last update: 2021-03-06 15:45:10
No citation recorded.
Last update: 2021-03-06 15:45:11
No citation recorded.
Copyright (c) 2020 Jurnal Teknologi dan Sistem Komputer
under
http://creativecommons.org/licenses/by-sa/4.0.
Starting in 2021, the author(s) whose article is published in the JTSiskom journal attain the copyright for their article. By submitting the manuscript to JTSiskom, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that their article is original, written by the mentioned author(s), has never been published before, does not contain statements that violate the law, does not violate the rights of others, is subject to copyright that is held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to articles, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce articles for its own purposes,
- The right to archive articles yourself (please read our deposit policy), and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of articles (for example, posting them to institutional repositories or publishing them in a book), with acknowledgment of its initial publication in this journal (Journal of Technology and Computer Systems).
If the article was prepared jointly by more than one author, each author submitting the manuscript warrants that they have been given permission by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agree to notify the co-authors of the terms of this policy. JTSiskom will not be held responsible for anything that may arise because of the writer's internal dispute. JTSiskom will only communicate with correspondence authors.
Authors should also understand that once published, their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available. The license of published articles (and additional data) will be governed by the Creative Commons Attribution license as currently featured on the Creative Commons Attribution-ShareAlike 4.0 International License. JTSiskom allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JTSiskom to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.