Segmentasi pelanggan menggunakan algoritme bisecting k-means berdasarkan model recency, frequency, dan monetary (RFM)

Customer segmentation using bisecting k-means algorithm based on recency, frequency, and monetary (RFM) model

*Novianti Puspitasari scopus  -  Department of Informatics, Universitas Mulawarman, Indonesia
Joan Angelina Widians  -  Department of Informatics, Universitas Mulawarman, Indonesia
Noval Bayu Setiawan  -  Department of Informatics, Universitas Mulawarman, Indonesia
Received: 5 Mar 2019; Revised: 14 Nov 2019; Accepted: 18 Nov 2019; Published: 30 Apr 2020; Available online: 5 Feb 2020.
DOI: https://doi.org/10.14710/jtsiskom.8.2.2020.78-83 View
Dataset -- Customer segmentation using bisecting k-means algorithm based on recency, frequency and monetary (RFM) model
Subject bisecting k-means; customer segmentation; RFM; best cluster; silhouette coefficient
Type Data Set
  Download (182KB)    Indexing metadata
Open Access Copyright (c) 2020 Jurnal Teknologi dan Sistem Komputer
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Article Info
Section: Original Research Articles
Language: ID
Statistics: 645 212
Abstract
Information on customer loyalty characteristics in a company is needed to improve service to customers. A customer segmentation model based on transaction data can provide this information. This study used parameters from the recency, frequency, and monetary (RFM) model in determining customer segmentation and bisecting k-means algorithm to determine the number of clusters. The dataset used 588 sales transactions for PT Dinar Energi Utama in 2017. The clusters formed by the bisecting k-means and k-means algorithm were tested using the silhouette coefficient method. The bisecting k-means algorithm can form the best customer segmentation into three groups, namely Occasional, Typical, and Gold, with a silhouette coefficient of 0.58132.

Note: This article has supplementary file(s).

Keywords: bisecting k-means; customer segmentation; RFM; best cluster; silhouette coefficient

Article Metrics:

  1. A. Ali, P. D. Paramita, and A. Fathoni, "Analisis faktor-faktor yang mempengaruhi kepuasan pelanggan di perusahaan galangan kapal (studi kasus pada PT. Janata Marina Indah Semarang)," Journal of Management, vol. 2, no. 2, pp. 1-12, 2016.
  2. T. Hardiani and R. Hartanto, "Segmentasi nasabah tabungan menggunakan model RFM (recency, frequency, monetary) dan k-means pada lembaga keuangan mikro," in Seminar Nasional Teknologi Informasi dan Komunikasi Terapan (SEMATIK), Semarang, Indonesia, Nov. 2015, pp. 463-468.
  3. B. E. Adiana, I. Soesanti, and A. E. Permanasari, "Analisis segmentasi pelanggan menggunakan kombinasi RFM model dan teknik clustering," Jurnal Terapan Teknologi Informasi, vol. 2, no. 1, pp. 23-32, 2018. doi: 10.21460/jutei.2018.21.76
  4. M. A. Yaqin, S. Naja, S. K. Al-Azhar, and K. Mahbullah, "Penerapan metode fuzzy sugeno pada analisis RFM untuk menentukan indeks produk pada permainan hayday," Prosiding SENIATI, vol. 5, no. 1, pp. 50-56, 2019.
  5. J. T. Wei, S.-Y. Lin, Y.-Z. Yang, and H.-H. Wu, "Applying data mining and RFM model to analyze customers' values of a veterinary hospital," in 2016 International Symposium on Computer, Consumer and Control (IS3C), Xian, China, Jul. 2016, pp. 481-484. doi: 10.1109/IS3C.2016.126
  6. N. P. P. Yuliari, I. K. G. D. Putra, and N. K. D. Rusjayanti, "Customer segmentation through fuzzy c-means and fuzzy RFM method," Journal of Theoretical and Applied Information Technology, vol. 78, no. 3, pp. 380-385, 2015.
  7. J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques, 3rd edition. MA: Morgan Kaufman Publishers, 2012.
  8. C. Slamet, A. Rahman, M. A. Ramdhani, and W. Darmalaksana, "Clustering the verses of the Holy Qur'an using k-means algorithm," Asian Journal of Information Technology, vol. 15, no. 24, pp. 5159-5162, 2016.
  9. A. P. Windarto, "Penerapan data mining pada ekspor buah-buahan menurut negara tujuan menggunakan k-means clustering method," Techno. Com, vol. 16, no. 4, pp. 348-357, 2017. doi: 10.33633/tc.v16i4.1447
  10. A. Bastian, "Penerapan algoritma k-means clustering analysis pada penyakit menular manusia (studi kasus kabupaten Majalengka)," Jurnal Sistem Informasi, vol. 14, no. 1, pp. 28-34, 2018.
  11. P. Purnawansyah, H. Haviluddin, A. F. O. Gafar, and I. Tahyudin, "Comparison between k-means and fuzzy c-means clustering in network traffic activities," in International Conference on Management Science and Engineering Management, Kanazawa, Japan, Jul. 2017, pp. 300-310. doi: 10.1007/978-3-319-59280-0_24
  12. T. Hardiani, “Segmentasi nasabah simpanan menggunakan fuzzy c means dan fuzzy rfm (recency, frequency, monetary) pada BMT xyz,” Network Engineering Research Operation (NERO), vol. 3, no. 3, pp. 185-192, 2018.
  13. N. Puspitasari, R. Rosmasari, and S. Stefanie, "Penentuan prioritas perbaikan jalan menggunakan fuzzy c-means: studi kasus perbaikan jalan di kota Samarinda," Jurnal Teknologi dan Sistem Komputer, vol. 5, no. 1, pp. 7-14, 2017. doi: 10.14710/jtsiskom.5.1.2017.7-14
  14. M. N. Sutoyo and A. T. Sumpala, "Penerapan fuzzy c-means untuk deteksi dini kemampuan penalaran matematis," Scientific Journal of Informatics, vol. 2, no. 2, pp. 129-135, 2016. doi: 10.15294/sji.v2i2.5080
  15. R. J. E. Putra, N. Nasution, and Y. Yummastian, "Aplikasi e-zakat penerimaan dan penyaluran menggunakan fuzzy c-means (studi kasus: LAZISMU Pekanbaru)," Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, vol. 6, no. 2, pp. 42-54, 2015.
  16. A. A. Rachman and Z. Rustam, "Cancer classification using fuzzy c-means with feature selection," in 12th International Conference Mathematics, Statistics, and Their Applications, Banda Aceh, Indonesia, Oct. 2016, pp. 31-34. doi: 10.1109/ICMSA.2016.7954302
  17. N. Puspitasari, J. A. Widians, and P. Pohny, "A clustering of generative and infectious diseases using fuzzy c-means," ITSMART: Jurnal Teknologi dan Informasi, vol. 7, no. 1, pp. 22-28, 2018.
  18. R. Patil and A. Khan, "Bisecting K-means for clustering web log data," International Journal of Computer Applications, vol. 116, no. 19, pp. 36-41, 2015. doi: 10.5120/20448-2799
  19. Q. Zhang, Y. Chi, and N. He, "Color image segmentation based on a modified k-means algorithm," in 7th International Conference on Internet Multimedia Computing and Service, New York, USA, Aug. 2015, pp. 1-4. doi: 10.1145/2808492.2808538
  20. M. S. G. Karypis, V. Kumar, and M. Steinbach, "A comparison of document clustering techniques," in KDD Workshop on Text Mining, Boston, USA, Aug. 2000, pp. 1-20.
  21. M. Wati, W. Indrawan, J. A. Widians, and N. Puspitasari, "Data mining for predicting students' learning result," in 4th International Conference on Computer Applications and Information Processing Technology, Bali, Indonesia, Aug. 2017, pp. 1-4. doi: 10.1109/CAIPT.2017.8320666
  22. P. Chapman et al., CRISP-DM 1.0 Step-by-step data mining guide. CRISP-DM consortium, 2000.
  23. C.-H. Cheng and Y.-S. Chen, "Classifying the segmentation of customer value via RFM model and RS theory," Expert systems with applications, vol. 36, no. 3, pp. 4176-4184, 2009. doi: 10.1016/j.eswa.2008.04.003
  24. P. Tan, M. Steinbach, and V. Kumar, "Introduction to Data Mining, Boston: Person Education," ed: Inc, 2006.
  25. E. Prasetyo, Data mining mengolah data menjadi informasi menggunakan Matlab. Yogyakarta: Andi Offset, 2014.
  26. L. Kaufman and P. J. Rousseuw, Finding groups in data. New York: John Wiley & Sons, 1990.
  27. Y. K. Jain and S. K. Bhandare, "Min max normalization based data perturbation method for privacy protection," International Journal of Computer & Communication Technology, vol. 2, no. 8, pp. 45-50, 2011.

No citation recorded.