Sistem pelacakan posisi pengguna menggunakan marker-based AR dalam menjelajahi galeri museum VR

User position tracking system using marker-based AR for exploring VR museum galleries

*Pius Dian Widi Anggoro  -  STMIK AKAKOM Yogyakarta, Indonesia
Received: 15 Feb 2019; Revised: 16 Aug 2019; Accepted: 6 Sep 2019; Published: 31 Oct 2019; Available online: 3 Oct 2019.
Open Access Copyright (c) 2019 Jurnal Teknologi dan Sistem Komputer
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Article Info
Section: Articles
Language: ID
Statistics: 294 78
Abstract
This study examines the user position tracking system using marker-based AR on smartphones camera. The tracking system uses a homographic algorithm integrated into the Galeri Museum VR application. In the test, the user performed exploration interactions by 6 degrees of freedom in ten different positions in the museum gallery. The physical space used in this study was 4 x 4 m2 and a marker attached to the wall in front of the user. This system results in errors in XYZ field (0.102 m, 0.047 m, 0.044 m). If the camera's orientation is not directing to the marker and the user is moving, jitter appears because of the untracked marker. The use of marker-based AR successfully applied to track the position of users who perform natural locomotion interactions in the VR environment.
Keywords
6DOF; augmented reality; marker based; position tracking; virtual reality

Article Metrics:

  1. G. Munster, D. Clinton, T. Jakel, and E. Murphy, “Next mega tech trend is virtual reality,” 2015. [Online]. Available: https://piper2.bluematrix.com/ sellside/EmailDocViewer?encrypt=052665f6-3484 -40b7-b972
  2. -, “Statistik Kepariwisataan 2015,” Dinas Pariwisata DIY, Yogyakarta, Indonesia, 2015.
  3. I. A. E. R. Juwita, “Strategi pemasaran museum wayang kekayon yogyakarta dalam meningkatkan jumlah pengunjung,” Jurnal Tata Kelola Seni, vol. 1, no. 1, pp. 60-74, 2015.
  4. O. D. E. 6DOF; Augmented Reality; Marker based; Position Tracking; Virtual RealityWulansari, A. R. Irawati, and D. K. Anggraeny, “Rancang bangun pemandu virtual berbasis mobile untuk museum lampung menggunakan augmented reality,” Jurnal Komputasi, vol. 2, no. 1, pp. 10-17, 2014.
  5. I. E. Sutherland, “A head-mounted three dimensional display,” in Proceedings of Fall Joint Computer Conference, San Francisco, USA, Dec. 1968, pp. 757-764. doi: 10.1145/1476589.1476686
  6. S. A. Aseeri, “Virtual reality interaction using mobile devices,” thesis, King Abdullah University of Science and Technology, Saudi Arabia, 2014. doi: 10.25781/KAUST-7Z81K
  7. W. Hürst and M. Helder, “Mobile 3D graphics and virtual reality interaction,” in the 8th International Conference on Advances in Computer Entertainment Technology, Lisbon, Portugal, Nov. 2011, pp. 1-8. doi: 10.1145/2071423.2071458
  8. F. M. Caputo, I. M. Ciortan, D. Corsi, M. D. Stefani, and A. Giachetti, “Gestural interaction and navigation techniques for virtual museum experiences,” in the 2016 Advanced Visual Interfaces for Cultural Heritage, Bari, Italy, Jun. 2016, pp. 32-35.
  9. G. J. Kim, Designing virtual reality systems: the structured approach. London: Springer, 2012.
  10. L. LaValle, Virtual reality. Cambridge University Press: Illinois, 2017.
  11. D. Valkov, F. Steinicke, G. Bruder, and K. H Hinrichs, “Traveling in 3d virtual environments with foot gestures and a multi-touch enabled,” in the 2010 Virtual Reality International Conference, Laval, France, Apr. 2010, pp 171-180.
  12. A. Kim, N. Darakjian, and J. M. Finley, “Walking in fully immersive virtual environments: an evaluation of potential adverse effects in older adults and individuals,” Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, 2017. doi: 10.1186/s12984-017-0225-2
  13. M. Slater, M. Usoh, and A. Steed, “Taking steps: the influence of a walking technique on presence in virtual reality,” ACM Transaction on Computer-Human Interaction, vol. 2, no. 3, pp. 201–219, 1995. doi: 10.1145/210079.210084
  14. M. Nabiyouni, A. Saktheeswaran, D. A. Bowman, and A. Karanth, “Comparing the performance of natural, semi-natural, and non-natural locomotion techniques in virtual reality,” in the 2015 IEEE Symposium on 3D User Interfaces (3DUI), Arles, France, Mar. 2015, pp. 3-10. doi: 10.1109/ 3DUI.2015.7131717
  15. M. Usoh et al., “Walking > walking-in-place > flying, in virtual environments,” in the 26th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, USA, Jul. 1999, pp. 359–364. doi: 10.1145/311535.311589
  16. L. P. Cheng, P. Lühne, P. Lopes, C. Sterz, and P. Baudisch, “Haptic turk: a motion platform based on people,” in the 2014 IEEE Haptics Symposium, Houston, USA, Feb. 2014, pp. 3463–3472. doi: 10.1109/HAPTICS.2014.6775553
  17. L. P. Cheng et al., “TurkDeck: physical virtual reality based on people,” in the 28th Annual ACM Symposium on User Interface Software & Technology, Charlotte, USA, Nov. 2015, pp. 417–426. doi: 10.1145/2807442.2807463
  18. M. C. Whitton et al., "Comparing VE locomotion interfaces," in the IEEE Virtual Reality, Bonn, Germany, Mar. 2005, pp. 123-130. doi: 10.1109/VR.2005.1492762
  19. K. Vasylevska, H. Kaufmann, M. Bolas, and E. A. Suma, “Flexible spaces: dynamic layout generation for infinite walking in virtual environments,” in the IEEE Symposium on 3D User Interfaces (3DUI), Orlando, USA, Mar. 2013, pp. 39-42. doi: 10.1109/3DUI.2013.6550194
  20. E. Rubia and A. Diaz-Estrella, “Natural locomotion based on foot-mounted inertial sensors in a wireless virtual reality system,” Presence, vol. 24, no. 4, pp. 298-321, 2015. doi: 10.1162/PRES_a_00236
  21. A. Harris, K. Nguyen, P. T. Wilson, M. Jackoski, and B. Williams, “Human joystick: Wii-leaning to translate in large virtual environments,” in the 13th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, Shenzhen, China, Nov. 2014, pp. 231-234. doi: 10.1145/2670473.2670512
  22. E. Kokkinara, K. Kilteni, K. J. Blomand, and M. Slater, “First person perspective of seated participants over a walking virtual body leads to illusory agency over the walking,” Scientific Reports, vol. 6, 2016. doi: 10.1038/srep28879
  23. A. W. Ismail, M. Billinghurst, M. S. Sunar, and C. S. Yusof, “Designing an augmented reality multimodal interface for 6DOF manipulation techniques,” in the 2018 Intelligent Systems Conference, Nov. 2018, pp. 309-322. doi: 10.1007/978-3-030-01054-6_22
  24. J. James, “VR editor: world scale,” Sketchfab Help Center, 2018, [Online]. Available: https://help.sketchfab.com/hc/en-us/articles/21164 0363-VR-Editor
  25. J. P. Stauffert, F. Niebling, and M. E. Latoschik, "Effects of latency jitter on simulator sickness in a search task," in the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces, Reutlingen, Germany, Mar. 2018, pp. 121-127. doi: 10.1109/VR.2018.8446195
  26. A. S. Kundu, O. Mazumder, A. Dhar, P. K. Lenka, and S. Bhaumik, "Scanning camera and augmented reality based localization of omnidirectional robot for indoor application," Procedia Computer Science, vol. 105, pp. 27-33, 2017. doi: 10.1016/j.procs.2017.01.183