- L. Shang, Q. Yang, J. Wang, S. Li, and W. Lei, "Detection of Rail Surface Defects Based on CNN Image Recognition and Classification," in 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon-si Gangwon-do, Korea, Feb. 2018, pp. 45–51
- X. Zhao, X. Shi, and S. Zhang, "Facial Expression Recognition via Deep Learning," IETE Technical Review, vol. 32, no. 5, pp. 347–355, 2015
- Y. Yang, D. Li, and Z. Duan, "Chinese Vehicle License Plate Recognition using Kernel-based Extreme Learning Machine with Deep Convolutional Features," IET Intelligent Transport Systems, vol. 12, no. 3, pp. 213–219, 2017
- H. D. Nguyen and M. Nakagawa, "Deep Neural Networks for Online Handwritten Mathematical Characters," in 18th Meeting on Image Recognition and Understanding, 2015, pp. 1–2
- S. Lee, S. J. Son, J. Oh, and N. Kwak, "Handwritten Music Symbol Classification Using Deep Convolutional Neural Networks," in 2016 International Conference on Information Science and Security, Pattaya, Thailand, Dec. 2016, pp. 1-5
- S. Nagaraj, B. Muthiyan, S. Ravi, V. Menezes, K. Kapoor, and H. Jeon, "Edge-based Street Object Detection," in 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Jun. 2017, pp. 1–4
- A. R. F. Quiros et al., "A kNN-based Approach for the Machine Vision of Character Recognition of License Plate Numbers," in 2017 IEEE Regional 10 Conference (TENCON 2017), Nov. 2017, pp. 1081–1086
- D. Singh, M. A. Khan, A. Bansal, and N. Bansal, "An Application of SVM in Character Recognition with Chain Code," in 2015 Communication, Control, and Intelligent Systems (CCIS), Mathura, India, Nov. 2015, pp. 167–171
- M. Y. W. Teow, "Understanding Convolutional Neural Networks Using A Minimal Model for Handwritten Digit Recognition," in 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS), Kota Kinibalu, Malaysia, Oct. 2017, pp. 167–172
- S. Albawi, T. A. Mohammed, and S. Al-Zawi, "Understanding of a Convolutional Neural Network," in 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, Aug. 2017, pp. 1–6
- P. P. Nair, A. James, and C. Saranavan, "Malayalam Handwritten Character Recognition using Convolutional Neural Network," in 2017 International Conference on Inventive Communication and Computational Technologise (ICICCT), Coimbatore, India, Mar. 2017, pp. 278–281
- Z. Shokoohi, A. M. Hormat, F. Mahmoudi, and H. Badalabadi, "Persian Handwritten Numeral Recognition using Complex Neural Network and Non-linear Feature Extraction," in 2013 1st Iranian Conference on Pattern Recognition and Image Analysis (PRIA). Birjand, Iran, Mar. 2013
- M. A. H. Akhand, M. M. Rahman, P. C. Shill, S. Islam, and M. M. H. Rahman, "Bangla Handwritten Numeral Recognition using Convolutional Neural Network," in 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, May 2015, pp. 1–5
- M. A. Wibowo, M. Soleh, W. Pradani, A. N. Hidayanto, and A. M. Arymurthy, "Handwritten Javanese Character Recognition using Descriminative Deep Learning Technique," in 2017 2nd International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, Nov. 2017, pp. 324–329
- M. He, S. Zhang, H. Mao, and L. Jin, "Recognition Confidence Analysis of Handwritten Chinese Character with CNN," in 2015 13th International Conference on Document Analysis and Recognition (ICDAR), 2015, pp. 61–65
- T. Datta, B. Purkaystha, and M. S. Islam, "Bengali Handwritten Character Recognition Using Deep Convolutional Neural Network," in 2017 20th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, Dec. 2017, pp. 22–24
- M. D. Zeiler, "ADADELTA: An Adaptive Learning Rate Method," arXiv: 1212.5701 [cs.LG], Dec. 2012
- K. Simonyan, and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv: 1409.1556 [cs.CV], Sept. 2014
Last update: 2021-03-06 07:11:52
No citation recorded.
Last update: 2021-03-06 07:11:53
No citation recorded.
Copyright (c) 2018 Jurnal Teknologi dan Sistem Komputer

This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
Starting in 2021, the author(s) whose article is published in the JTSiskom journal attain the copyright for their article. By submitting the manuscript to JTSiskom, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that their article is original, written by the mentioned author(s), has never been published before, does not contain statements that violate the law, does not violate the rights of others, is subject to copyright that is held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to articles, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce articles for its own purposes,
- The right to archive articles yourself (please read our deposit policy), and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of articles (for example, posting them to institutional repositories or publishing them in a book), with acknowledgment of its initial publication in this journal (Journal of Technology and Computer Systems).
If the article was prepared jointly by more than one author, each author submitting the manuscript warrants that they have been given permission by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agree to notify the co-authors of the terms of this policy. JTSiskom will not be held responsible for anything that may arise because of the writer's internal dispute. JTSiskom will only communicate with correspondence authors.
Authors should also understand that once published, their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available. The license of published articles (and additional data) will be governed by the Creative Commons Attribution license as currently featured on the Creative Commons Attribution-ShareAlike 4.0 International License. JTSiskom allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JTSiskom to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.