Klasifikasi Algoritma Swarm Intelligence Dalam Perspektif Complex Adaptive System dengan Metode Uji Komparasi Statistik

DOI: https://doi.org/10.14710/jtsiskom.5.4.2017.166-171
Open Access Copyright (c) 2017 Jurnal Teknologi dan Sistem Komputer
Article Info
Submitted: 2017-09-14
Published: 2017-10-31
Section: Articles
Language: ID

Article Metrics & Tools: (Click on the Metric tab below to see the detail)

This research aims to classify which SI algorithms have CAS or non-CAS criteria. The statistical comparative test method with 5 (five) characteristic test parameters was used as the proof approach that produces the classification. Based on the hypothesis that has been tested from 15 (fifteen) algorithms compared in this study, It was obtained that 8 of 15 (53.33%) algorithms has the majority of CAS characteristics, 3 of 15 (20%) algorithms has a minority of characteristics of CAS, and 4 out of 15 (26.66%) algorithms did not have CAS characteristics. The result can be a reference in understanding the characteristics of SI algorithms in the CAS and vice versa.

Penelitian ini bertujuan mengklasifikasikan algoritma SI yang memiliki kriteria CAS ataupun tidak. Metode uji komparasi statistik dengan 5 (lima) parameter uji karakteristik CAS digunakan sebagai pendekatan pembuktian yang menghasilkan klasifikasi tersebut. Berdasarkan hipotesis yang telah diuji dan dibahas, dari 15 (lima belas) algoritma yang dibandingkan dalam penelitian ini, didapatkan 8 dari 15 (53,33%) algoritma memiliki mayoritas karakteristik CAS, 3 dari 15 (20%) algoritma memiliki minoritas karakteristik CAS, dan 4 dari 15 (26,66%) tidak memiliki karakteristik CAS. Hasil tersebut dapat menjadi referensi teori dalam memahami karakteristik algoritma SI dalam CAS dan sebaliknya.


Algoritma swarm intelligence; complex adaptive system; uji komparasi statistik; statistical comparison test


  1. I. Fister Jr. S. X. Yang, I. Fister, J. Brest, and D. Fister, "A Brief Review of Nature-Inspired Algorithms for Optimization," ELEKTROTEHNIˇSKI VESTNIK, vol. 80, no. 3, pp. 116–1227, 2013.
  2. K. R. Standish, Concept and Definition of Complexity, in Intelligent Complex Adaptive Systems, IGI Global, Hershey, 2008.
  3. R. Reddy, and S. Kalavathi, "Termite Colony Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem," International Journal of Research in Electronics and Communication Technology, vol. 1, no. 4, pp. 34–42, 2014.
  4. R. Tang, S. Fong, S. X. Yang, and S. Deb, "Wolf search algorithm with ephemeral memory," in 7th International Conference on Digital Information Management (ICDIM 2012), 2012, pp. 165–172. doi: 10.1109/ICDIM.2012.6360147.
  5. Y. Liu, X. Wu, and Y. Shen, "Cat Swarm Optimization Clustering (KSACSOC): A Cat Swarm Optimization Clustering Algorithm", Scientific Research and Essays, vol. 7, no. 49, pp. 4176–4185, 2012.
  6. S. X. Yang, and S. Deb, "Eagle Strategy using Levy Walk and Frefly Algorithms for Stochastic Optimization", in Nature Inspired Cooperative Strategies for Optimization (NICSO2010), 2010. pp. 101–111. Springer Berlin Heidelberg.
  7. S. K. Fateen, and A. Bonilla-petriciolet, "Cuckoo Search and Firefly Algorithm," Studies in Computational Intelligence, vol. 516, pp. 315–330, 2014. doi: 10.1007/978-3-319-02141-6.
  8. S. Das, A. Biswas, S. Dasgupta, and A. Abraham, "Bacterial Foraging Optimization Algorithm : Theoretical Foundations, Analysis, and Applications," Foundations of Computational Intelligence, vol. 3, no. 3, pp. 23–55, 2009. doi: 10.1007/978-3-642-01085-9_2.
  9. K. B. Yogha, M. Cendana, and R. Lipikorn, R. (2017) ‘Non-deterministic Finite State Automata as Termites swarm Agent Model’, in 2017 7th International Workshop on Computer Science and Engineering (WCSE), 2017.
  10. J. Ni, L. Wu, X. Fan, and S. X. Yang, "Bioinspired Intelligent Algorithm and its Applications for Mobile Robot Control: a Survey," Computational Intelligence and Neuroscience, vol. 2016. doi: 10.1155/2016/381090.
  11. R. Xiao, Z. Tao, and T. Chen, "An Analytical Approach to the Similarities between Swarm Intelligence and Artificial Neural Network," Transactions of the Institute of Measurements and Control, vol. 34, no. 6, pp. 736-745, 2011.
  12. S. X. Yang, S. Deb, and S. Fong, "Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications," in the Third International Conference on Networked Digital Technologies (NDT 2011). Networked Digital Technologies, Communications in Computer and Information Science, Jul. 2011, v. 136, p. 53-66.
  13. M. Dorigo, and T. Stutze, Ant Colony Optimization, MIT Press, ISBN 0-262-04219-3, England, 2004.
  14. D. Karaboga, and B. Basturk, "On the Performance of Artificial Bee Colony (ABC) Algorithm," Applied Soft Computing, vol. 8, no. 1, pp. 687–697, 2008. doi: 10.1016/j.asoc.2007.05.007.
  15. S. X. Yang, and X. He, "Bat Algorithm: Literature Review and Applications," International Journal of Bio-Inspired Computation, vol. 5, no. 3, pp. 141–149, 2013. doi: 10.1504/IJBIC.2013.055093.
  16. S. Iordache, "Consultant-Guided Search Algorithms with Local Search for the Traveling Salesman Problem’, in Parallel Problem Solving from Nature XI, 2010, pp. 81–90.
  17. S. X. Yang, "Firefly Algorithms for Multimodal Optimization," in International Symposium on Stochastic Algorithms, Berlin, 2009, pp. 169–178.
  18. M. Neshat, A. Adeli, G. Sepidnam, M. Sargolzaei, and A. N. Toosi, "A Review of Artificial Fish Swarm Optimization Methods and Applications," International Journal on Smart Sensing and Intelligent Systems, vol. 5, no. 1, pp. 107–148, 2012.
  19. K. N. Krishnanand, and D. Ghose, "Glowworm Swarm Optimization for Simultaneous Capture of Multiple Local Optima of Multimodal Functions," Swarm Intelligence, vol. 3, no. 2, pp. 87–124, 2009. doi: 10.1007/s11721-008-0021-5.
  20. H. Chen, Y. Zhu, K. Hu, and X. He, "Hierarchical swarm model: A new approach to optimization," Discrete Dynamics in Nature and Society, vol. 2010, 2010. doi: 10.1155/2010/379649.
  21. C. M. Ituarte-Villarreal, N. Lopez, and J. F. Espiritu, "Using the Monkey Algorithm for Hybrid Power Systems Optimization," Procedia Computer Science, vol. 12, pp. 344–349, 2012. doi: 10.1016/j.procs.2012.09.082.

  1. Ketut Bayu Yogha Bintoro  Scopus Sinta
    Teknik Informatika, Universitas Trilogi, Indonesia
  2. Silvester Dian Handy Permana 
    Teknik Informatika, Universitas Trilogi, Indonesia