Sistem Pendukung Keputusan Pemilihan Line-up Pemain Sepak Bola Menggunakan Metode Fuzzy Multiple Attribute Decision Making dan K-Means Clustering

Decision Support System for Football Players Lineup Selection using Fuzzy Multiple Attribute Decision Making and K-Means Clustering Methods

Aldi Nurzahputra* -  Department of Informatics, Universitas Negeri Semarang, Indonesia
Afrizal Rizqi Pranata -  Department of Informatics, Universitas Negeri Semarang, Indonesia
Aji Puwinarko -  Department of Informatics, Universitas Negeri Semarang, Indonesia
Open Access Copyright (c) 2017 Jurnal Teknologi dan Sistem Komputer

In football, the selection of players line-up is based on their statistical performance. In this research, the line-up selection can implement the decision support system (DSS) with FMADM SAW method. The criteria were used are goal, assists, saves, clean sheets, yellow cards, red cards, games, and an own goal. Then, the assessment players performance is using K-Means Clustering. There are two clusters: cluster_cukup and cluster_baik. The system used Manchester City player data in Forward, Midfielder, Defender and Goal Keeper position. The purpose of this research is applying the FMADM and K-Means Clustering method to the system. Based on the results, the line-up selection can be processed by FMADM method and the performance assessed by K-Means Clustering method. By using the system, the selection and the assessment can be conducted and give the best decision for football coach objectively.

Keywords
decision support system; players line-up selection; FMADM method; K-means clustering

How to cite:

Full Text:

Article Metrics:

Article Info
Submitted: 2017-02-28
Published: 2017-07-31
Section: Articles
Language: ID
Statistics: 590 346
  1. S. P. K. Utomo, and P. Kurniawan, “Sistem Penunjang Keputusan dalam Pemilihan Pemain Untuk Posisi Tertentu pada Sepakbola,” Semnasteknomedia Online, vol. 4, no. 1, Februari 2016.
  2. E. Turban, J. Aronson, and T. P. Liang, Decision Support Systems and Intelligent Systems 7th Edition. NJ: Pearson Prentice Hall, 2005, pp. 10-15.
  3. R. Amalia, A. Fadlun, and K. Arivanty, "Sistem Pendukung Keputusan untuk Menentukan Penerima Beasiswa Bank BRI Menggunakan FMADM (Studi Kasus: Mahasiswa Fakultas Teknologi Industri Universitas Islam Indonesia)," in Seminar Nasional Aplikasi Teknologi Informasi (SNATI), Yogyakarta: UII, 20 Juni 2009.
  4. S. Kusumadewi, S. Hartati, A. Harjoko, and R. Wardoyo, Fuzzy Multi-Attribute Decision Making (Fuzzy MADM). Yogyakarta: Graha Ilmu, 2006.
  5. F. A. Hermawati, Data Mining. Yogyakarta: Penerbit Andi, 2013.
  6. S. Eniyati, "Perancangan Sistem Pendukung Pengambilan Keputusan untuk Penerimaan Beasiswa dengan Metode SAW (Simple Additive Weighting)," Dinamik-Jurnal Teknologi Informasi, vol. 16, no. 2. Juli 2011. [Diakses 20 Maret 2017]
  7. J. Aranda, and W.A.G. Natasya, "Penerapan Metode K-Means Cluster Analysis pada Sistem Pendukung Keputusan Pemilihan Konsentrasi Untuk Mahasiswa International Class STMIK Amikom Yogyakarta," in Seminar Nasional Teknologi Informasi dan Multimedia, Yogyakarta: UII, 6-7 Februari 2016.
  8. A. Singla, and M. Karambir. "Comparative analysis & evaluation of euclidean distance function and manhattan distance function using k-means algorithm," International Journal of Advanced Research in Computer Science and Software Engineering (IJARSSE), vol. 2 no. 7. pp. 298-300, Juni 2012.
  9. B. N. Sari, "Identification of Tuberculosis Patient Characteristics Using K-Means Clustering," Scientific Journal of Informatics, vol. 3, no. 2, pp. 31-40. 17 November 2016. [Diakses 4 April 2017]
  10. K. Kusrini, Konsep dan Aplikasi Sistem Pendukung Keputusan. Yogyakarta: Penerbit Andi, 2007.