skip to main content

Comparative Analysis of PSNR, Histogram and Contrast using Edge Detection Methods for Image Quality Optimization

Edge Detection Analysis using Roberts, Sobel, Prewitt and Canny Methods

1Magister Teknik Informatika, Fakultas Teknologi Industri, Universitas Ahmad Dahlan, Indonesia

2Program Teknik Elektro, Fakultas Teknologi Industri, Universitas Ahmad Dahlan, Indonesia

Received: 4 May 2021; Published: 31 Jan 2022.
Open Access Copyright (c) 2021 Kgs Muhammad Rizky Alditra Utama, Rusydi Umar, Anton Yudhana
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Border identification in a digital image is overgrowing in line with advances in computer technology for image processing. Edge detection becomes vital in recognizing the object of an image because the edge of the object in the image contains critical information, the information obtained can be either the size or shape of the object in the image. This study uses the Roberts operator, the Sobel operator, the Prewitt operator, and the Canny operator and make quality comparisons and analyze the four methods. The analysis shows that the calculation of PSNR on the Robetrs method has the highest value with an average of 44.19 dB, Sobel, Prewitt and Canny operators have PSNR values above 30 dB so that it is classified as a good image. Other quality comparisons use the histogram value and the contrass value with the highest value on the Sobel operators with an average histogram value of 22.06. Based on testing, it can be concluded that the Roberts operators have the best image quality.
Fulltext Email colleagues
Keywords: image; edge detection; PSNR; histogram; contrast

Article Metrics:

  1. A. Eleyan and M. S. Anwar, “Multiresolution Edge Detection Using Particle Swarm Optimization,” Int. J. Eng. Sci. Appl., vol. 1, no. 1, pp. 11–17, 2017, doi: 10.1109/CCAA.2017.8229843
  2. S. Saifullah, Sunardi, and A. Yudhana, “Analisis Perbandingan Pengolahan Citra Asli Dan Hasil Croping Untuk Identifikasi Telur,” J. Tek. Inform. dan Sist. Inf., vol. 2, no. 3, 2018, doi: 10.28932/jutisi.v2i3.512
  3. D. Herawati and A. R. Kardian, “Analisis Deteksi Tepi Pada Citra Digital Berbasis JPG Dengan Operator Canny Menggunakan Matrix Laboratory,” J. Ilm. Komputasi, vol. 17, no. 3, pp. 191–208, 2018
  4. V. Dohare and M. P. Parsai, “A Review of Speed Performance Evaluation of Varios Edge Detection Methods of Images,” Indian J. Comput. Sci. Eng., vol. 8, no. 2, pp. 128–138, 2017
  5. I. M. B. Saputra, A. Romadhony, and Adiwijaya, “Analisis Kompresi Lossless JPEG dengan Penambahan komplemen terkompresi deflate,” 2012
  6. K. R. O. Recio and R. G. Mendoza, “Three-step Approach to Edge Detection of Texts,” Philipp. J. Sci., vol. 148, no. 1, pp. 193–211, 2019
  7. S. Reno and R. Edyal, “Analisa Perbandingan Deteksi Tepi Citra Foto Menggunakan Algoritma Robert dan Prewitt,” Multinetics, vol. 2, no. 2, p. 11, 2016, doi: 10.32722/vol2.no2.2016.pp11-15
  8. M. R. H. Mohd Adnan, A. Mohd Zain, H. Haron, M. Zulfaezal Che Azemin, and M. Bahari, “Consideration of Canny Edge Detection for Eye Redness Image Processing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 551, no. 1, 2019, doi: 10.1088/1757-899X/551/1/012045
  9. P. Hidayatullah, Pengolahan Citra Digital. Bandung: Informatika Bandung, 2017
  10. I. G. N. Suryantara, “Implementasi Deteksi Tepi Untuk Mendeteksi Keretakan Tulang Orang Lanjut Usia (Manula) Pada Citra Rontgen Dengan Operator Sobel Dan Prewitt,” J. Algoritm. Log. dan Komputasi, vol. 1, no. 2, pp. 51–60, 2018, doi: 10.30813/j-alu.v1i2.1368
  11. R. E. Wibowo, R. R. Isnanto, and A. A. Zahra, “Perbandingan Kinerja Operator Sobel dan Laplacian of Gaussian ( LoG ) Terhadap Acuan Canny untuk Mendeteksi Tepi Citra,” Transient, vol. 3, no. 1, pp. 1–6, 2014
  12. Rashmi, M. Kumar, and R. Saxena, “Algorithm and Technique on Various Edge Detection : A Survey,” Signal Image Process. An Int. J., vol. 4, no. 3, pp. 65–75, 2013, doi: 10.5121/sipij.2013.4306
  13. S. Subhasini, “Color Image Edge Detection,” Int. J. Innov. Eng. Technol., vol. 8, no. 1, pp. 235–247, 2017, doi: 10.21172/ijiet.81.032
  14. A. S. Ahmed, “Comparative Study Among Sobel, Prewitt and Canny Edge Detection Operators Used in Image Processing,” J. Theor. Appl. Inf. Technol., vol. 96, no. 19, pp. 6517–6525, 2018
  15. M. Joshi and A. Vyas, “Comparison of Canny edge detector with Sobel and Prewitt edge detector using different image formats,” Int. J. Eng. Res. Technol., no. 1, pp. 133–137, 2020
  16. C. Nagaraju, “Canny Scale Edge Detection,” Int. J. Eng. Trends Technol., no. November, pp. 3–7, 2017, doi: 10.14445/22315381/IJETT-ICGTETM-N3/ICGTETM-P121
  17. R. Kaur and P. Choudhary, “A Review of Image Compression Techniques,” Int. J. Comput. Appl., vol. 142, no. 1, pp. 8–11, 2016, doi: 10.5120/ijca2016909658
  18. C. Chang, Y. Chou, and J. Shen, “Improving Image Quality for JPEG Compression,” Knowledge-Based Intell. Inf. Eng. Syst., vol. 3683, pp. 442–448, 2005
  19. I. Riadi, A. Yudhana, and W. Y. Sulistyo, “Analisis Perbandingan Nilai Kualitas Citra pada Metode Deteksi Tepi,” Rekayasa Sist. dan Teknol. Inf., vol. 4, no. 2, pp. 345–351, 2020
  20. R. Mehra, “Estimation of the Image Quality under Different Distortions,” Int. J. Eng. Comput. Sci., vol. 5, no. 17291, pp. 17291–17296, 2016, doi: 10.18535/ijecs/v5i7.20
  21. S. Rajkumar and G. Malathi, “A Comparative Analysis on Image Quality Assessment For Real Time Satellite Images,” Indian J. Sci. Technol., vol. 9, no. 34, 2016, doi: 10.17485/ijst/2016/v9i34/96766
  22. A. Thahab, “A Novel Secure Video Steganography Technique using Temporal Lifted Wavelet Transform and Human Vision Properties,” Int. Arab J. Irformation Technol., vol. 17, no. 2, pp. 147–153, 2020

Last update:

No citation recorded.

Last update: 2022-09-30 00:27:54

No citation recorded.