1Faculty of Computer Science, Universitas Brawijaya, Jl. Veteran, Ketawanggede, Kec. Lowokwaru, Kota Malang, Jawa Timur 65145, Indonesia
2Badan Riset dan Inovasi Nasional, Indonesia
BibTex Citation Data :
@article{JTSISKOM14121, author = {Rifky Yunus Krisnabayu and Ahmad Afif Supianto and Satrio Agung Wicaksono}, title = {Prediksi Siswa Putus Sekolah Swasta Menggunakan Algoritma Bayesian Network (Studi Pada : SMA Islam Al Wahid Kepung)}, journal = {Jurnal Teknologi dan Sistem Komputer}, volume = {10}, number = {2}, year = {2022}, keywords = {putus sekolah; data mining; klasifikasi; bayesian network; system usability scale}, abstract = { Masalah siswa putus sekolah di SMA Islam Al Wahid membawa dampak kepada sekolah antara lain berkurangnya bantuan operasional yang diterima, berkurangnya jumlah rombongan belajar, dan hutang biaya siswa. Mempertimbangkan dampaknya bagi sekolah, penelitian ini bertujuan mengembangkan sistem prediksi dini siswa putus sekolah. Penelitian menggunakan Bayesian Network (BN) dengan tujuan mengetahui faktor yang paling berpengaruh, di mana tugas tersebut tidak dapat diselesaikan menggunakan naive bayes. Jumlah data yang digunakan dalam penelitian ini berjumlah 77 siswa dengan 18 siswa berlabel putus sekolah. Hasil dari penelitian ini menghasilakn sebuah model dengan akurasi bernilai 0, 935 dan nilai area under curve sebesar 0 , 948. Struktur BN memperlihatkan bahwa faktor nilai rerata, mengikuti ekstrakurikuler, dan penghasilan ayah merupakan faktor yang paling berpengaruh terhadap siswa putus sekolah. Struktur BN memperlihatkan bahwa faktor nilai rerata, mengikuti ekstrakurikuler, dan penghasilan ayah merupakan faktor yang paling berpengaruh terhadap siswa putus sekolah. }, issn = {2338-0403}, pages = {80--87} doi = {10.14710/jtsiskom.2022.14121}, url = {https://jtsiskom.undip.ac.id/article/view/14121} }
Refworks Citation Data :
Masalah siswa putus sekolah di SMA Islam Al Wahidmembawa dampak kepada sekolah antara lain berkurangnya bantuan operasional yang diterima, berkurangnya jumlah rombongan belajar, dan hutang biaya siswa. Mempertimbangkan dampaknya bagi sekolah, penelitian ini bertujuan mengembangkan sistem prediksi dini siswa putus sekolah. Penelitian menggunakan Bayesian Network (BN) dengan tujuan mengetahui faktor yang paling berpengaruh, di mana tugas tersebut tidak dapat diselesaikan menggunakan naive bayes. Jumlah data yang digunakan dalam penelitian ini berjumlah 77 siswa dengan 18 siswa berlabel putus sekolah. Hasil dari penelitian ini menghasilakn sebuah model dengan akurasi bernilai 0,935 dan nilai area under curve sebesar 0,948. Struktur BN memperlihatkan bahwa faktor nilai rerata, mengikuti ekstrakurikuler, dan penghasilan ayah merupakan faktor yang paling berpengaruh terhadap siswa putus sekolah. Struktur BN memperlihatkan bahwa faktor nilai rerata, mengikuti ekstrakurikuler, dan penghasilan ayah merupakan faktor yang paling berpengaruh terhadap siswa putus sekolah.
Article Metrics:
Last update:
Last update: 2024-12-20 10:04:30
Starting from 2021, the author(s) whose article is published in the JTSiskom journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JTSiskom, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JTSiskom will not be held responsible for anything arising because of the writer's internal dispute. JTSiskom will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JTSiskom allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JTSiskom to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.