1Politeknik Statistika STIS, Indonesia
2Politeknik Statistika STIS, Jl. Otto Iskandardinata 64C Jakarta Timur, Indonesia
BibTex Citation Data :
@article{JTSISKOM14031, author = {Bayu Dwi Kurniawan and Arie Wahyu Wijayanto}, title = {Perbandingan Metode Ensemble Machine Learning untuk Klasifikasi Tenaga Kerja di Indonesia dengan Random Forest, XGBoost, dan CatBoost}, journal = {Jurnal Teknologi dan Sistem Komputer}, volume = {10}, number = {4}, year = {2024}, keywords = {sakernas; random forest; xgboost; catboost}, abstract = {Survei Angkatan Kerja Nasional (Sakernas) adalah survei periodik yang besar sehingga membutuhkan pengolahan data kompleks serta validasi benar untuk menjaga kualitas data. Salah satu pertanyaan Sakernas yang pengisian dan validasinya secara manual yaitu lapangan pekerjaan utama. Untuk memberikan validasi, Machine Learning dapat diterapkan dengan memanfaatkan informasi pada isian lain. Penelitian ini menggunakan metode Random Forest, XGBoost, dan CatBoost untuk klasifikasi lapangan pekerjaan utama pada Sakernas Agustus 2019. Berdasarkan hasil, ketiga model memiliki performa yang hampir sama baik dari presisi, recall, dan f1 yaitu untuk sektor primer dan tersier diatas 90 % dan sektor sekunder sebesar 80%. Model dari Random Forest, XGBoost, dan CatBoost memiliki akurasi sebesar 91,80%; 90,88%; dan 91,84%. Nilai Area Under Curve (AUC) dari ketiga model relatif tinggi dengan CatBoost memiliki nilai tertinggi pada klasifikasi sektor primer, sekunder, dan tersier masing-masing sebesar 1,00; 0,97; dan 0,98.}, issn = {2338-0403}, doi = {10.14710/jtsiskom.2022.14031}, url = {https://jtsiskom.undip.ac.id/article/view/14031} }
Refworks Citation Data :
Note: This article has supplementary file(s).
Article Metrics:
Last update:
Last update: 2024-12-20 12:10:49
Starting from 2021, the author(s) whose article is published in the JTSiskom journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JTSiskom, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JTSiskom will not be held responsible for anything arising because of the writer's internal dispute. JTSiskom will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JTSiskom allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JTSiskom to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.