- C. Zhang, F. Liu, and Y. He, “Identification of coffee bean varieties using hyperspectral imaging: Influence of preprocessing methods and pixel-wise spectra analysis,” Scientific Reports, vol. 8, no. 1, pp. 1–11, 2018. doi: 10.1038/s41598-018-20270-y
- Y. Hendrawan, S. Widyaningtyas, and S. Sucipto, “Computer vision for purity, phenol, and pH detection of Luwak coffee green bean,” Telkomnika: Telecommunication Computing Electronics and Control, vol. 17, no. 6, pp. 3073–3085, 2019. doi: 10.12928/telkomnika.v17i6.12689
- Kementerian Pertanian, Outlook 2018 Komoditas Pertanian Subsektor Perkebunan Kopi. Jakarta: Kementrian Pertanian, 2019
- J. A. Vignoli, M. C. Viegas, D. G. Bassoli, and M. T. Benassi, “Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees,” Food Research International, vol. 61, pp. 279–285, 2014. doi: 10.1016/j.foodres.2013.06.006
- E. R. Arboleda, A. C. Fajardo, and R. P. Medina, “Classification of coffee bean species using image processing, artificial neural network and k nearest neighbors, ” in IEEE International Conference on Innovative Research and Development, Bangkok, Thailand, Jun. 2018. doi: 10.1109/ICIRD.2018.8376326
- M. M. Sebatubun and M. A. Nugroho, “Ekstraksi fitur circularity untuk pengenalan varietas kopi arabika,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 4, pp. 283-289, 2017. doi: 10.25126/jtiik.201744505
- J. P. Rodríguez, D. C. Corrales, J. N. Aubertot, and J. C. Corrales, “A computer vision system for automatic cherry beans detection on coffee trees,” Pattern Recognition Letters, vol. 136, pp. 142–153, 2020. doi: 10.1016/j.patrec.2020.05.034
- M. Widyaningsih, “Identifikasi kematangan buah apel dengan gray level co-occurrence matrix (GLCM),” Jurnal SAINTEKOM, vol. 6, no. 1, pp. 71-88, 2017. doi: 10.33020/saintekom.v6i1.7
- A. Lawi and Y. Adhitya, “Classifying physical morphology of cocoa beans digital images using multiclass ensemble least-squares support vector machine,” Journal of Physics: Conference Series, vol. 979, 012029, 2018. doi: 10.1088/1742-6596/979/1/012029
- I. Campaña, A. Benito-Calvo, A. Pérez-González, J. M. Bermúdez de Castro, and E. Carbonell, “Assessing automated image analysis of sand grain shape to identify sedimentary facies, Gran Dolina archaeological site (Burgos, Spain),” Sedimentary Geology, vol. 346, pp. 72–83, 2016. doi: 10.1016/j.sedgeo.2016.09.010
- W. Chen, H. R. Pourghasemi, and S. A. Naghibi, “A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China,” Bulletin of Engineering Geology and the Environment, vol. 77, no. 2, pp. 647–664, 2018. doi: 10.1007/s10064-017-1010-y
- M. Wang, Y. Wan, Z. Ye, and X. Lai, “Remote sensing image classification based on the optimal support vector machine and modified binary coded ant colony optimization algorithm,” Information Sciences, vol. 402, pp. 50–68, 2017. doi: 10.1016/j.ins.2017.03.027
- N. B. Bahadure, A. K. Ray, and H. P. Thethi, “Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM,” International Journal of Biomedical Imaging, vol. 2017, 9749108, 2017. doi: 10.1155/2017/9749108
- L. S. Wei, Q. Gan, and T. Ji, “Skin disease recognition method based on image color and texture features,” Computational and Mathematical Methods in Medicine, vol. 2018, 8145713, 2018. doi: 10.1155/2018/8145713
- K. Petrujkić et al., “Computational quantitative MR image features - a potential useful tool in differentiating glioblastoma from solitary brain metastasis,” European Journal of Radiology, vol. 119, 108634, 2019. doi: 10.1016/j.ejrad.2019.08.003
- E. Etriyanti, D. Syamsuar, and N. Kunang, “Implementasi data mining menggunakan algoritme naive bayes classifier dan c4.5 untuk memprediksi kelulusan mahasiswa,” Telematika, vol. 13, no. 1, pp. 56–67, 2020. doi: 10.35671/telematika.v13i1.881
- R. Munawarah, O. Soesanto, and M. R. Faisal, “Penerapan metode support vector machine,” KLIK - Kumpulan Jurnal Ilmiah Ilmu Komputer, vol. 4, no. 1, pp. 103–113, 2016
- M. A. Ebrahimi, M. H. Khoshtaghaza, S. Minaei, and B. Jamshidi, “Vision-based pest detection based on SVM classification method,” Computers and Electronics in Agriculture, vol. 137, pp. 52–58, 2017. doi: 10.1016/j.compag.2017.03.016
- I. Syarif, A. Prugel-Bennett, and G. Wills, “SVM parameter optimization using grid search and genetic algorithm to improve classification performance,” Telkomnika: Telecommunication Computing Electronics and Control, vol. 14, no. 4, pp. 1502–1509, 2016. doi: 10.12928/telkomnika.v14i4.3956
- M. K. V. Joshi and D. D. Shah, “Hybrid of the fuzzy c means and the thresholding method to segment the image in identification of cotton bug,” International Journal of Applied Engineering Research , vol. 13, no. 10, pp. 7466–7471, 2018
- R. A. Asmara and T. A. Heryanto, “Klasifikasi varietas biji kopi arabika menggunakan ekstraksi bentuk dan tekstur,” in Seminar Informatika Aplikatif Polinema, Malang, Indonesia, Jun. 2019, pp. 316–322
- N. Musyaffa and B. Rifai, “Model support vector machine berbasis particle swarm optimization untuk prediksi penyakit liver,” JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), vol. 3, no. 2, pp. 189–194, 2018
- P. Thanh Noi and M. Kappas, “Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery,” Sensors, vol. 18, no. 1, 2017. doi: 10.3390/s18010018
- H. Wang, B. Zheng, S. W. Yoon, and H. S. Ko, “A support vector machine-based ensemble algorithm for breast cancer diagnosis,” European Journal of Operational Research, vol. 267, no. 2, pp. 687–699, 2018. doi: 10.1016/j.ejor.2017.12.001
Last update:
No citation recorded.
Last update: 2025-04-02 09:17:49
No citation recorded.
Copyright (c) 2022 The authors. Published by Department of Computer Engineering, Universitas Diponegoro

This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
Starting from 2021, the author(s) whose article is published in the JTSiskom journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JTSiskom, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
- their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), is free from the rights of third parties, and the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (Jurnal Teknologi dan Sistem Komputer).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JTSiskom will not be held responsible for anything arising because of the writer's internal dispute. JTSiskom will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JTSiskom allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JTSiskom to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.