Combination of SOM-RBF for drought code prediction using rainfall and air temperature data

Dwi Marisa Midyanti

Abstract


This study aims to predict Drought Code (DC) in Kabupaten Kubu Raya using a combination of SOM-RBF. The final weight value of SOM was used as a center on the RBF network. The input data variables are rainfall data and air temperature data for three days with three binary outputs to predict DC values. This study also observed the effect of the number of neurons, learning rates, and the number of iterations on the results of the SOM-RBF network training. The smallest MSE of training result from the SOM-RBF network was 0.159933 using 65 neurons in the hidden layer, learning rate 0.007, and epoch 45000. The detection accuracy of SOM-RBF was 91.34 % from 245 test data.

Keywords


drought code prediction; self organizing map; radial basis function

References


-, “Laporan hasil pemantauan sumberdaya alam dan lingkungan serta mitigasi bencana alam berdasarkan data satelit penginderaan jauh,” Lembaga Penerbangan dan Antariksa Nasional Indonesia, 2017. [Online]. Available: http://pusfatja.lapan.go.id/index.php/publikasi

Y. Yang, M. Uddstrom, G. Pearce, and M. Revell, “Reformulation of the drought code in the canadian fire weather index system implemented in New Zealand,” Journal of Applied Meteorology and Climatology, vol. 54, pp. 1523-1537, 2015. doi: 10.1175/JAMC-D-14-0090.1

S. Haykin, Neural Networks and Learning Machines, 3nd Edition. New Jersey: Pearson Education, 2009.

R. Hidayati, D. M. Midyanti, and S. Bahri, “Klasifikasi bibit tanaman lahan gambut berdasarkan bentuk daun menggunakan metode radial basis function (RBF),” Semnasteknomedia Online, vol. 6, no. 1, pp. 12-18, 2018.

A. C. D. de Souza and M. A. C. Fernandes, “Parallel fixed point implementation of a radial basis function network in an FPGA,” Sensors (Basel), vol. 14, no. 10, pp. 18223–18243, 2014. doi: 10.3390/s141018223

U. M. Tukur and S. M. Shamsuddin, “Radial basis function network learning with modified backpropagation algorithm,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 13, no. 2, pp. 369-378, 2015.

D. M. Alemayehu, A. D. Mengistu, and S. G. Mengistu, “Computer vision for ethiopian agricultural crop pest identification,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 3, no. 1, pp. 209-214, 2016.

A.D. Cahyani, B. K. Khotimah, and R. T. Rizkillah, “Perbandingan metode SOM (self organizing map) dengan pembobotan berbasis RBF (radial basis function),” Jurnal Teknologi Technoscientia, vol.7, no.1, pp. 85-92, 2014.

F. J. M. Lopez, J. A. T. Arriaza, S. M. Puertas, and M. M. P. Lopez, “Multilevel neuronal architecture to resolve classification problems with large training sets: Parallelization of the training process,” Journal of Computational Science, vol. 16, pp. 59-64, 2016. doi: 10.1016/j.jocs.2016.04. 002

H. K. Hommod and T. K. Jebur, “Applying self-organizing map and modified radial based neural network for clustering and routing optimal path in wireless network,” Journal of Physics: Conference Series, vol. 1003, pp. 1-11, 2018. doi: 10.1088/ 1742-6596/1003/1/012040

R. H. Julia, N. Nikentari, and N. Hayaty, “Penerapan self organizing maps (SOM) dan radial basis function (RBF) untuk memprediksi kecepatan angin di perairan kota Tanjungpinang,”, Jurnal Sustainable: Jurnal Hasil Penelitian dan Industri Terapan, vol. 7, no. 2, pp. 102-107, 2018. doi: 10.31629/sustainable.v7i2.627

S. Mohammadi and F. Amiri, “An efficient hybrid self-learning intrusion detection system based on neural networks,” International Journal of Computational Intelligence and Applications, vol. 18, no. 1, pp. 1950001, 2019. doi: 10.1142/S1469026819500019

A. H. Osman and A. A. Alzahrani, “New approach for automated epileptic disease diagnosis using an integrated self-organization map and radial basis function neural network algorithm,” IEEE Access, vol. 7, pp. 4741-4747, 2018. doi: 10.1109/ACCESS.2018.2886608

M. R. Noviansyah, T. Rismawan, and D. M. Midyanti, “Penerapan data mining menggunakan metode k-nearest neighbor untuk klasifikasi indeks cuaca kebakaran berdasarkan data AWS (automatic weather station) (studi kasus : kabupaten Kubu Raya),” Jurnal Coding, Sistem Komputer Untan, vol. 6, no. 2, pp. 48-56, 2018.

E. Supartini et al., Membangun Kesadaran, Kewaspadaan dan Kesiapsiagaan Dalam Menghadapi Bencana. Jakarta: Badan Nasional Penanggulanan Bencana, 2017.

T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biological Cybernetics, vol. 43, no. 1, pp. 59-69, 1982. doi: 10.1007/bf00337288




DOI: https://doi.org/10.14710/jtsiskom.8.1.2020.64-68

Copyright (c) 2020 Jurnal Teknologi dan Sistem Komputer

Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.