- F. Boulton, "Evidence-based criteria for the care and selection of blood donors, with some comments on the relationship to blood supply, and emphasis on the management of donation-induced iron depletion," Transfusion Medicine, vol. 18, no. 1, pp. 13-27, 2008. doi: 10.1111/j.1365-3148.2007.00818.x
- A. Eder, M. Goldman, S. Rossmann, D. Waxman, and C. Bianco, "Selection criteria to protect the blood donor in North America and Europe: past (dogma), present (evidence), and future (hemovigilance)," Transfusion Medicine Reviews, vol. 23, no. 3, pp. 205-220, 2009. doi: 10.1016/j.tmrv.2009.03.003
- W. B. Zulfikar, Y. A. Gerhana, and A. F. Rahmania, "An approach to classify eligibility blood donors using decision tree and naive bayes classifier," in 6th International Conference Cyber IT Service Management (CITSM), Parapat, Indonesia, Aug. 2018, pp. 1-5. doi: 10.1109/CITSM.2018.8674353
- Blood donor selection: guidelines on assessing donor suitability for blood donor donation. World Healt Organization, 2012
- I.-C. Yeh, K.-J. Yang, and T.-M. Ting, "Knowledge discovery on RFM model using Bernoulli sequence," Expert System with Applications, vol. 36, no. 3, part 2, pp. 5866-5871, 2009. doi: 10.1016/j.eswa.2008.07.018
- W. E. Susanto and D. Riana, "Komparasi algoritma neural network, k-nearest network dan naive bayes untuk memprediksi pendonor darah potensial," Jurnal Speed, vol. 8, no. 3, pp. 18-27, 2016
- B. M. Shashikala, M. P. Pushpalatha, and B. Vijaya, "Machine learning approaches for potential blood donors prediction," in Emerging Research in Electronics, Computer Science and Technology, vol. 545, 2019, pp. 483-491. doi: 10.1007/978-981-13-5802-9_44
- M. A. jabbar, B. L. Deekshatulu, and P. Chandra, “Classification of heart disease using k-nearest neighbor and genetic algorithm,” Procedia Technology, vol. 10, pp. 85–94, 2013. doi: 10.1016/j.protcy.2013.12.340
- H. Yigit, “A weighting approach for KNN classifier,” in International Conference on Electronics, Computer and Computation, Ankara, Turkey, Nov. 2013, pp. 228–231. doi: 10.1109/ICECCO.2013.6718270
- X. Wu et al., “Top 10 algorithms in data mining,” Knowledge and Information System, vol. 14, no. 1, pp. 1-37, 2008. doi: 10.1007/s10115-007-0114-2
- Y. Kumar and G. Sahoo, “Prediction of different types of liver diseases using rule based classification model,” Technology and Health Care, vol. 21, no. 5, pp. 417–432, 2013. doi: 10.3233/THC-130742
- M. Mishra and M. Srivastava, “A view of artificial neural network,” in International Conference on Advances in Engineering & Technology Research, Unnao, India, Aug. 2014, pp. 1-3. doi: 10.1109/ICAETR.2014.7012785
- W. B. Zulfikar, M. Irfan, C. N. Alam, and M. Indra, "The comparation of text mining with Naive Bayes classifier, nearest neighbor, and decision tree to detect Indonesian swear words on Twitter," in 5th International Conference Cyber IT Service Management (CITSM), Denpasar, Indonesia, Aug. 2017, pp. 1-5. doi: 10.1109/CITSM.2017.8089231
- W. B. Zulfikar and N. Lukman, "Perbandingan Naive Bayes classifier dengan Nearest Neighbor untuk identifikasi penyakit mata," Journal Online Informatika, vol. 1, no. 2, pp. 82-86, 2016, doi: 10.15575/join.v1i2.33
- J. Yang, Z. Ye, X. Zhang, W. Liu, and H. Jin, "Attribute weighted Naive Bayes for remote sensing image classification based on cuckoo search algorithm," in 2017 International Conference Security Pattern Analylis, and Cybernetics (SPAC), Shenzen, China, Dec. 2017, pp. 169-174. doi: 10.1109/SPAC.2017.8304270
- M. Darwiche, M. Feuilloy, G. Bousaleh, and D. Schang, "Prediction of blood transfusion donation," in 4th International Conference on Research Challenges in Information Science (RCIS), Nice, France, May 2010, pp. 51-56. doi: 10.1109/RCIS.2010.5507363
- B. Gabrys and L. Petrakieva, “Combining labelled and unlabelled data in the design of pattern classification systems,” Int. J. Approx. Reason., vol. 35, no. 3, pp. 251–273, 2004. doi: 10.1016/j.ijar.2003.08.005
- S. Agarwal, “Data mining: Data mining concepts and techniques,” in International Conference on Machine Intelligence and Research Advancement, Katra, India, Dec. 2013, pp. 203-207. doi: 10.1109/ICMIRA.2013.45
Last update: 2021-04-21 22:40:50
No citation recorded.
Last update: 2021-04-21 22:40:51
No citation recorded.
Copyright (c) 2020 Jurnal Teknologi dan Sistem Komputer
under
http://creativecommons.org/licenses/by-sa/4.0.
Starting in 2021, the author(s) whose article is published in the JTSiskom journal attain the copyright for their article. By submitting the manuscript to JTSiskom, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that their article is original, written by the mentioned author(s), has never been published before, does not contain statements that violate the law, does not violate the rights of others, is subject to copyright that is held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to articles, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce articles for its own purposes,
- The right to archive articles yourself (please read our deposit policy), and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of articles (for example, posting them to institutional repositories or publishing them in a book), with acknowledgment of its initial publication in this journal (Journal of Technology and Computer Systems).
If the article was prepared jointly by more than one author, each author submitting the manuscript warrants that they have been given permission by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agree to notify the co-authors of the terms of this policy. JTSiskom will not be held responsible for anything that may arise because of the writer's internal dispute. JTSiskom will only communicate with correspondence authors.
Authors should also understand that once published, their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available. The license of published articles (and additional data) will be governed by the Creative Commons Attribution license as currently featured on the Creative Commons Attribution-ShareAlike 4.0 International License. JTSiskom allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JTSiskom to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.