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Abstract – Software Defect Prediction (SDP) provides
insights that can help software teams to allocate their
limited  resources  in  developing  software  systems.  It
predicts  likely  defective  modules  and  helps  avoid
pitfalls  that  are  associated  with  such  modules.
However,  these  insights  may  be  inaccurate  and
unreliable if parameters of SDP models are not taken
into consideration. In this study, the effect of parameter
tuning on the k nearest  neighbor (k-NN) in SDP was
investigated.  More  specifically,  the  impact  of  varying
and selecting optimal k value, the influence of distance
weighting and the impact of distance functions on k-NN.
An experiment was designed to investigate this problem
in  SDP  over  6  software  defect  datasets.  The
experimental  results  revealed  that k  value  should  be
greater than 1 (default) as the average RMSE values of
k-NN when k>1(0.2727) is less than when k=1(default)
(0.3296). In addition, the predictive performance of k-
NN  with  distance  weighing  improved  by  8.82%  and
1.7%  based  on  AUC  and  accuracy  respectively.  In
terms of  the distance  function,  kNN models  based on
Dilca  distance  function  performed  better  than  the
Euclidean distance function (default distance function).
Hence,  we  conclude  that  parameter  tuning  has  a
positive effect on the predictive performance of k-NN in
SDP.

Keywords –  software  defect  prediction;  parameter
tuning; k-nearest neighbor; distance function; distance
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I. INTRODUCTION

Software  Defect  Prediction  (SDP)  entails  the
identification  or  prediction  of  defect-prone  software
modules  which  in  turn  helps  software  engineers  to
prioritize the usage of limited resources during testing
or maintenance phases in the SDLC [1], [2]. Therefore,
the software quality and reliability are guaranteed  [3],
[4]. Software source code complexity, software metrics,

and  software  development  history are  the  information
that serves as the features used by SDP models for the
prediction  of  defective  software  modules  [5]-[7].
Engineered  software  metrics  such  as  McCabe  and
Halstead Metrics,  Procedural  Metrics,  etc.  are used to
determine the quality and reliability level of a software
system [5],  [8]. Each software module or component is
characterized by a set of metrics and a class label. The
class label indicates the state of a module, whether it is
defective  or  non-defective,  and  the  derived  metric
values  are  used  to  build  SDP  models  [9]-[11].  SDP
utilizes historical data mined from software repositories
to  determine  the  quality  and  reliability  of  software
modules for software quality assurance [12], [13]. 

Machine learning methods are the most common and
widely  used  method  for  SDP  [14].  Data-driven  SDP
generally relies on machine learning techniques, most of
which have several parameters that can be adjusted to
optimize  the  algorithm  [15],  [16].  Most  machine
learning algorithms have a default set of parameters that
are chosen or set by default to reflect the best setting for
general  performance  [17].  However,  these  default
settings may not give the best results in all cases, and
the optimal parameter settings are not known in advance
[15]. The practice of choosing parameters that leads to
increased  performance  within  a  particular  domain  or
when applied to a particular type of data is known as
parameter tuning. 

Jiang et al.  [18] and Tosun and Bener  [19] in their
respective  works  reported  that  Random  Forest  and
Naïve  Bayes  would  give  a  sub-optimal  performance
with default parameter settings. Koru and Liu [20] and
Mende [21] also showed that tuning parameter settings
of SDP models affect its performance. Also, Hall et al.
[22] showed  that  the  use  of  default  parameters  in
unstable  classification  techniques  leads  to  its
underperformance. All those mentioned above made it
imperative to investigate the impact of parameter tuning
in SDP. 

It is unknown the effects of parameter tuning on the
performance of classifiers in SDP, as many studies seem
to make an implicit assumption on the parameter setting
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by using default  values  [15],  [23]-[25]. Findings from
this study will help researchers in deciding and setting
the  appropriate  parameters  for  selected  predictive
models  in  their  research  that  will  give  better  and
consistent predictive results irrespective of the tool used
for the analysis. 

The  attention  of  researchers  has  been  drawn  to
parameter  settings  of  prediction  models  in  SDP.  For
example,  Koru and Liu  [20] and Mende  [21], in their
works,  posited  that  using  different  parameter  settings
than  the  default  settings  has  a  positive  effect  on  the
performance  of  SDP  prediction  models.  Tosun  and
Bener  [19],  in their respective studies, also mentioned
that  the  default  parameter  usage  of  machine  learning
tools such as R, Weka, Scikit-learn, and Matlab are sub-
optimal. It has also been reported that SDP models may
under-perform when sub-optimal parameters are used. 

However,  determining  the  optimal  and  suboptimal
parameter settings is a challenge as most SDP models
have  many  parameters  [26]-[28].  It  makes  many
empirical studies of SDP to settle for default parameter
settings. For example, Mende [21] implemented random
forest using the R package with the default number of
decision trees as its parameter setting. Jiang et al.  [18]
and Bibi et al. [29] also used the default value of the k-
nearest neighbors’ classification technique (k = 1). Also,
the implementations of classification techniques that are
provided  by  different  research  toolkits  often  use
different  default  settings.  As  a  result  of  different
parameter  settings  across  machine  learning  tools,  this
may affect the SDP researches [30].

Recent researches have looked into the knowledge
transfer  mechanism  of  using  parameter  settings  of
prediction  models  with  good  performance  on  a
particular dataset to another dataset. As a reference, Tan
et  al.  [31] experimented  and  explored  different
parameter  settings  for  Alternating  Decision  Tree
(ADTree).  The  goal  was  to  identify  the  optimal
parameter setting and apply it to other datasets. Jiang et
al.  [18] also  did  the  same  on  Multivariate  Adaptive
Regression  Splines  (MARS)  with  various  parameter
settings on one dataset.  With those mentioned above,
the applicability issue of using parameter settings across
datasets is still not clear as several other factors, such as
data quality problems can set in. However, determining
and adapting  optimal  parameter  settings of  prediction
models across  datasets  without depletion in predictive
performance  will  be  of  benefit  against  automated
parameter optimization.

Therefore,  this  study  aims  to  investigate  the
parameter  tuning  of  Instance-Based  Learning  (IBK)
algorithm,  more  specifically  k-Nearest  Neighbor  (k-
NN), as it has been widely used in SDP [15], [23], [24],
[26].  The parameter tuning is based on determining the
optimal  number  of  neighbors,  best  distance  function,
and applicability of distance weighting. Disjoint  k-NN
models  were  developed  using  default  and  optimal  k
values,  different  distance  weighting  methods,  and
different distance functions. The respective models were
used  on  six  software  defects  dataset  from the  NASA

repository,  and  their  predictive  performances  were
measured  comparatively  analyzed.  The  experimental
results showed that parameter tuning with respect to  k
value, distance function, and distance weighting options
in  k-NN  has  a  positive  effect  on  its  predictive
performance.

II. RESEARCH METHODS

This study is aimed at investigating and evaluating
the impact of parameter tuning of k-NN for SDP.

A. Experimental framework

As depicted in Figure 1, the experimental framework
of this study makes use of datasets which were divided
into  training  and  test  sets  based  on  10-fold  cross-
validation, a process of dividing a given dataset into 10
subsets, in which 9 subsets are used for training and the
remaining one subset is used for testing the developed
model, iteratively for ten times until all subsets are used
as test set and results are averaged. Moreover, the phase
of data pre-processing saw the selection of relevant and
useful features among the features of the given dataset
through the usage of the Correlation Feature Selection
(CFS) technique, which was based on greedy-stepwise
search method. 

The  k-NN  algorithm  was  implemented,  and  the
search  for  the  optimal  k value  for  each  dataset  was
carried  out,  both  with  the  optimal  k value  and  the
default parameter values for k-NN. Disjoint experiments
were  carried  out  to  reveal  the effect  of implementing
different distance weighting methods. With the optimal
k value,  different  experiments  were  carried  by
implementing different distance functions of k-NN, and
thus the impact of the distance functions was evaluated.
The  performances  of  all  developed  models,  using
default  and  optimal  k  values,  different  distance
weighting  methods,  and  different  distance  functions
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Figure 1. Experimental framework



were all measured, and the impact of parameter tuning
was analyzed.

B. Datasets

The  datasets  used  in  this  study  are  five  public-
domain  software  defect  datasets  provided  by  the
National  Aeronautics  Space  Administration  (NASA)
repository.  The  datasets  used  in  this  study  are  KC1,
KC2, KC3, MW1, PC2, and PC4.  A brief description of
these datasets is provided in Table 1.

C. K nearest neighbor (KNN)

Instance Base Learner (IBL) or  k-Nearest Neighbor
classifies instances based on similarities.  It is a type of
lazy  learning  method  where  the  function  is  only
approximated  locally,  and  all  computation  is  deferred
until  classification  [32].  An  object  is  classified  by  a
majority  of  its  neighbors.  The  k is  always  a  positive
integer. The neighbors are selected from a set of objects
for which the correct classification is known. Whenever
there is a need for a new point to classify, its  k nearest
neighbors from the training data are used in determining
the class of its replica in the test set  [33]. Algorithm 1
presents the algorithm for k-NN. 

D. Performance metrics

The  metrics  used  in  this  study  to  evaluate  the
performance of a classifier model are accuracy (Eq. 1),
precision (Eq. 2), recall (Eq. 3), area under curve /AUC
which shows the tradeoff between TP rate and FP rate,
and f-measure (Eq. 4)  [35]. The metric values were all
computed using the statistical  values  of True Positive
(TP),  True  Negative  (TN),  False  Positive  (FP),  and
False Negative (FN).

Accuracy= TP+TN
TP+FP+ FN+TN

                   (1)

Precision= TP
TP+FP

                           (2)

Recall= TP
TP+FN

                             (3)

           FMeasure= 2×Precision×Recall
Precision+Recall

              (4)

III. RESULTS AND DISCUSSIONS

Tables  2  presents  the  optimal  k values  for  k-NN
using  the  elbow  method.  From  studies,  it  has  been
gathered that obtaining the optimal k value for instance
of  base learners  depends  on the  nature  of  the dataset
[36],  [37].  Elbow  method  was  adopted  based  on
Relative Mean Square Error (RMSE) for each  k Value
(1 to 15) [38]. As the value of k increases, the error rate
goes  down,  then  stabilizes,  and  then  rises  again.  The
optimum k value is at the beginning of the stable zone. 

It  clearly  shows  that  using  the  default  value  of  k
(usually k=1) is not the appropriate or the best value in
the  context  of  SDP.  Also,  this  finding  further

strengthens the aim of this study of tuning parameters
appropriately  in  the  classification  task.  Respective
optimal  k values for the selected SDP datasets used in
this study, which are k = 3 for KC1, KC3, and PC4, and
k = 4 for KC2, MW1, and PC2.
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Table 1. Software defect datasets

Dataset
Number of
Instances

Number of
Attributes

Language

KC1 2109 22 C++
KC2 522 22 C++
KC3 458 40 C++
MW1 403 38 C
PC2 5589 37 C++
PC4 1458 38 C++

Algorithm 1. k-NN algorithm [34]

BEGIN
Build the training data set Di = { (X1, C1),..., (XN, CN)}
X = (X1,..., XN) new instance to be classified
For  each labeled instance (Xi, Ci) do

If X has an unknown system call then
X is abnormal;

else then
For each process Dj in training data do

calculate Sim(X, Dj);
if Sim(X, Dj) == 1.0 then

X is normal and exit;
Order Sim(X, Di) from Lowest to highest, (i = 1,...,N);
Find K biggest scores of Sim(X, D);
Select the K nearest instances to X: DK

X;
Assign to x the most frequent class in DK

X;
Calculate Sim_Avg for k-nearest neighbours;

If Sim_Avg > threshold then
   X is normal; 

else then
      X is abnormal;

    Return X;
END

Table  2. The  RMSE values  of  different k values  on
KC1, KC2, KC3, MW1, PC2, and PC4 datasets

k
RMSE

KC1 KC2 KC3 MW1 PC2 PC4
1 0.3953 0.4427 0.3488 0.3464 0.0869 0.3574
2 0.3592 0.393 0.3166 0.297 0.0732 0.3059
3 0.3476 0.3734 0.2943 0.2737 0.0697 0.2973
4 0.3416 0.3614 0.2841 0.2688 0.0685 0.293
5 0.3407 0.352 0.2848 0.2612 0.0664 0.2913
6 0.3397 0.3516 0.2838 0.2587 0.0656 0.2936
7 0.3383 0.3494 0.2841 0.2566 0.0655 0.2911
8 0.3373 0.3476 0.2834 0.2559 0.0648 0.2916
9 0.3383 0.3474 0.2833 0.255 0.0648 0.2921
10 0.3373 0.347 0.2821 0.2555 0.0647 0.2921
11 0.3365 0.3472 0.2803 0.2522 0.0647 0.2924
12 0.3355 0.3447 0.2795 0.2497 0.0648 0.2936
13 0.3361 0.3411 0.2795 0.2493 0.0648 0.2915
14 0.3359 0.3398 0.2777 0.2482 0.0648 0.2921
15 0.3351 0.3416 0.2769 0.248 0.0648 0.2926



In revealing the impact of tuning the distance weight
parameter, various methods of distance weighting (DW)
were carried out, which are no distance weight (No DW)
as default,   1/ DW ,  and  1−DW .  These methods of
distance  weighting  were  also  experimented  using  the
default  k-value  and  the  optimal  k  value  of  the  k-NN
algorithm. Tables 3 and 4 depict  the results for these
experiments as measured using the performance metrics.

In Table 3, the average performance evaluation of k-
NN  with  default  (k =  1)  based  on  different  metrics
(accuracy, precision, recall, f-measure, and Area Under
Curve) is presented. The essence of this analysis is to
further  evaluate  the  effect  of  tuning  k-NN’s  distance
weighting function. With or without tuning the distance
weighting parameters, the same results were observed in
terms  of  the  average  accuracy,  average  precision,
average recall, and average f-measure.  In contrast, the
value  of  the  AUC varies  as  k  = 1  with  1/ DW and  
1−DW gave  better  AUC values  of  0.715  and  0.718

respectively against NoDW of 0.618.
Further analyses were carried out to investigate the

effect  of  distance  weighting  on  respective  optimal  k
values. As shown in Table 6, with optimal k value from
Table 4, distance weighting ( 1/ DW  and 1−DW ) had
a good effect on the optimal  k values with an average
accuracy of 86.06% and 86.65% against 85.13%. There
was  also  a  significant  increase  in  the  average  recall,
average  f-measure,  and  average  AUC  values,  as
presented in Table 4. 

Table  5  shows  the  results  of  the  average
performance  evaluation  of  k-NN  distance  function
techniques. By default, the Euclidean distance is used,
but from analysis, it was discovered that there are other
distance  functions  that  can  do  better  than  Euclidean
distance. Dilca distance had the best average accuracy
(85.16%), best average precision (0.823), average recall
(0.852), average F-measure (0.832), and the be0st AUC
value  (0.741)  when  compared  with  the  default
Euclidean  distance  function.  Chebyshev  distance
function  also  had  a  good  impact  more  than  the
Euclidean  distance  with  better  accuracy,  recall  value,
and AUC. However,  the Euclidean was slightly better
than Chebyshev in precision and f-measure values. 

It  has shown that parameter  tuning in  k-NN had a
positive effect on the performance of the classifier. The
k value  should  not  be  set  to  default  (k  =  1)  in  the
classification task as it  has been proved that  higher  k
values  performed  better  than  the  default  (k  =  1).
However,  from  our  findings,  there  is  no  universal  k
value  as  the  k value  varies  from  dataset  to  dataset.
Distance  weighting also  should  be  done as  the k-NN
classifier got better when the distance weighting options
are considered and the other distance functions such as
Dilca Distance and Chebyshev also gave good results
when compared with default Euclidean distance. 

Conclusively,  k-NN  parameter  tuning  in SDP  is
highly encouraged as the predictive performance of  k-
NN was better than using default parameter values. The
findings of this study on tuning parameters of classifiers
are consistent with that of Tantithamthavorn et al. [15],

and Song et al.  [39] as parameter tuning has a positive
impact on classifiers in SDP.

IV. CONCLUSIONS

The  experimental  results  revealed  that parameter
tuning had a positive effect on the performance of k-NN
in  SDP.  The  value  for  k should  be  greater  than  1
(default), distance weighting option should be used, and
other  distance  functions  can  also  be explored  as  they
gave  better  predictive  performance  than  k-NN  with
default parameters. 

Even if SDP models are trained on a clean defect
dataset,  and  their  respective  parameters  are  not  tuned
accordingly,  SDP  models  may  produce  inaccurate
performance.  To  this  end,  parameter  tuning  of  SDP
models is advised. It  is  also recommended that  future
works  should  look  into  using  other  classification
techniques.  It  will  enable  researchers  and  software
engineers to get the best out of classification techniques
in SDP. Also, parameter tuning in the presence of data
quality issues such as outliers and class imbalance can
also be considered.
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Table  3. Average  performance  evaluation  of  k-NN's
distance  weighting  techniques  based  on  different
metrics using default k value (k =1)

Distance Weighting No DW 1/DW 1-DW
Average Accuracy 82.05 82.05 82.05
Average Precision 0.82 0.82 0.82
Average Recall 0.82 0.82 0.82
Average F-Measure 0.82 0.82 0.82
Average AUC 0.618 0.715 0.718

Table  4. Average  performance  evaluation  of  k-NN's
distance  weighting  techniques  based  on  different
metrics using optimal k values

Distance Weighting No DW 1/DW 1-DW
Average Accuracy 85.13 86.06 86.65
Average Precision 0.83 0.83 0.83

Average Recall 0.85 0.86 0.86
Average F-Measure 0.84 0.84 0.84

Average AUC 0.68 0.74 0.74

Table  5. Average  performance  evaluation  of  k-NN's
distance function techniques based on different metrics
using the optimal k value

Distance
Function

 Accuracy Precision Recall F-Measure AUC

Chebyshev 84.46 0.815 0.844 0.827 0.736
Dilca 85.16 0.823 0.852 0.832 0.741
Euclidean 84.32 0.816 0.843 0.828 0.723
Filtered 83.92 0.819 0.839 0.827 0.724
Manhattan 83.98 0.814 0.840 0.825 0.722
Minkowski 84.32 0.816 0.843 0.827 0.723
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