
Available at https://jtsiskom.undip.ac.id (3 October 2019)
DOI:10.14710/jtsiskom.7.4.2019.121-126

Jurnal Teknologi dan Sistem Komputer, 7(4), 2019, 121-126

Parameter tuning in KNN for software defect prediction: an empirical
analysis

Modinat Abolore Mabayoje1), Abdullateef Oluwagbemiga Balogun*,1), Hajarah Afor Jibril1),
Jelili Olaniyi Atoyebi2) , Hammed Adeleye Mojeed1) , Victor Elijah Adeyemo1)

1)Department of Computer Science, University of Ilorin
 PMB 1515 Ilorin, Nigeria

2)Department of Computer Science and Engineering, Obafemi Awolowo University
220005 Ile-Ife, State of Osun, Nigeria

How to cite: M. A. Mabayoje, A. O. Balogun, H. A. Jibril, J. O. Atoyebi, H. A. Mojeed, and V. E. Adeyemo,
"Parameter tuning in KNN for software defect prediction: an empirical analysis," Jurnal Teknologi dan Sistem
Komputer, vol. 7 no. 4, pp. 121-126, 2019. doi: 10.14710/jtsiskom.7.4.2019.121-126, [Online].

Abstract – Software Defect Prediction (SDP) provides
insights that can help software teams to allocate their
limited resources in developing software systems. It
predicts likely defective modules and helps avoid
pitfalls that are associated with such modules.
However, these insights may be inaccurate and
unreliable if parameters of SDP models are not taken
into consideration. In this study, the effect of parameter
tuning on the k nearest neighbor (k-NN) in SDP was
investigated. More specifically, the impact of varying
and selecting optimal k value, the influence of distance
weighting and the impact of distance functions on k-NN.
An experiment was designed to investigate this problem
in SDP over 6 software defect datasets. The
experimental results revealed that k value should be
greater than 1 (default) as the average RMSE values of
k-NN when k>1(0.2727) is less than when k=1(default)
(0.3296). In addition, the predictive performance of k-
NN with distance weighing improved by 8.82% and
1.7% based on AUC and accuracy respectively. In
terms of the distance function, kNN models based on
Dilca distance function performed better than the
Euclidean distance function (default distance function).
Hence, we conclude that parameter tuning has a
positive effect on the predictive performance of k-NN in
SDP.

Keywords – software defect prediction; parameter
tuning; k-nearest neighbor; distance function; distance
weighting

I. INTRODUCTION

Software Defect Prediction (SDP) entails the
identification or prediction of defect-prone software
modules which in turn helps software engineers to
prioritize the usage of limited resources during testing
or maintenance phases in the SDLC [1], [2]. Therefore,
the software quality and reliability are guaranteed [3],
[4]. Software source code complexity, software metrics,

and software development history are the information
that serves as the features used by SDP models for the
prediction of defective software modules [5]-[7].
Engineered software metrics such as McCabe and
Halstead Metrics, Procedural Metrics, etc. are used to
determine the quality and reliability level of a software
system [5], [8]. Each software module or component is
characterized by a set of metrics and a class label. The
class label indicates the state of a module, whether it is
defective or non-defective, and the derived metric
values are used to build SDP models [9]-[11]. SDP
utilizes historical data mined from software repositories
to determine the quality and reliability of software
modules for software quality assurance [12], [13].

Machine learning methods are the most common and
widely used method for SDP [14]. Data-driven SDP
generally relies on machine learning techniques, most of
which have several parameters that can be adjusted to
optimize the algorithm [15], [16]. Most machine
learning algorithms have a default set of parameters that
are chosen or set by default to reflect the best setting for
general performance [17]. However, these default
settings may not give the best results in all cases, and
the optimal parameter settings are not known in advance
[15]. The practice of choosing parameters that leads to
increased performance within a particular domain or
when applied to a particular type of data is known as
parameter tuning.

Jiang et al. [18] and Tosun and Bener [19] in their
respective works reported that Random Forest and
Naïve Bayes would give a sub-optimal performance
with default parameter settings. Koru and Liu [20] and
Mende [21] also showed that tuning parameter settings
of SDP models affect its performance. Also, Hall et al.
[22] showed that the use of default parameters in
unstable classification techniques leads to its
underperformance. All those mentioned above made it
imperative to investigate the impact of parameter tuning
in SDP.

It is unknown the effects of parameter tuning on the
performance of classifiers in SDP, as many studies seem
to make an implicit assumption on the parameter setting

Copyright ©2019, JTSiskom, e-ISSN: 2338-0403, p-ISSN: 2620-4002
 Submitted: 27 January 2019; Revised: 7 July 2019, 31 July 2019; Accepted: 10 August 2019; Published: 31 October 2019

*) Correspondence author (A. O. Balogun)
Email: balogun.ao1@unilorin.edu.ng

by using default values [15], [23]-[25]. Findings from
this study will help researchers in deciding and setting
the appropriate parameters for selected predictive
models in their research that will give better and
consistent predictive results irrespective of the tool used
for the analysis.

The attention of researchers has been drawn to
parameter settings of prediction models in SDP. For
example, Koru and Liu [20] and Mende [21], in their
works, posited that using different parameter settings
than the default settings has a positive effect on the
performance of SDP prediction models. Tosun and
Bener [19], in their respective studies, also mentioned
that the default parameter usage of machine learning
tools such as R, Weka, Scikit-learn, and Matlab are sub-
optimal. It has also been reported that SDP models may
under-perform when sub-optimal parameters are used.

However, determining the optimal and suboptimal
parameter settings is a challenge as most SDP models
have many parameters [26]-[28]. It makes many
empirical studies of SDP to settle for default parameter
settings. For example, Mende [21] implemented random
forest using the R package with the default number of
decision trees as its parameter setting. Jiang et al. [18]
and Bibi et al. [29] also used the default value of the k-
nearest neighbors’ classification technique (k = 1). Also,
the implementations of classification techniques that are
provided by different research toolkits often use
different default settings. As a result of different
parameter settings across machine learning tools, this
may affect the SDP researches [30].

Recent researches have looked into the knowledge
transfer mechanism of using parameter settings of
prediction models with good performance on a
particular dataset to another dataset. As a reference, Tan
et al. [31] experimented and explored different
parameter settings for Alternating Decision Tree
(ADTree). The goal was to identify the optimal
parameter setting and apply it to other datasets. Jiang et
al. [18] also did the same on Multivariate Adaptive
Regression Splines (MARS) with various parameter
settings on one dataset. With those mentioned above,
the applicability issue of using parameter settings across
datasets is still not clear as several other factors, such as
data quality problems can set in. However, determining
and adapting optimal parameter settings of prediction
models across datasets without depletion in predictive
performance will be of benefit against automated
parameter optimization.

Therefore, this study aims to investigate the
parameter tuning of Instance-Based Learning (IBK)
algorithm, more specifically k-Nearest Neighbor (k-
NN), as it has been widely used in SDP [15], [23], [24],
[26]. The parameter tuning is based on determining the
optimal number of neighbors, best distance function,
and applicability of distance weighting. Disjoint k-NN
models were developed using default and optimal k
values, different distance weighting methods, and
different distance functions. The respective models were
used on six software defects dataset from the NASA

repository, and their predictive performances were
measured comparatively analyzed. The experimental
results showed that parameter tuning with respect to k
value, distance function, and distance weighting options
in k-NN has a positive effect on its predictive
performance.

II. RESEARCH METHODS

This study is aimed at investigating and evaluating
the impact of parameter tuning of k-NN for SDP.

A. Experimental framework

As depicted in Figure 1, the experimental framework
of this study makes use of datasets which were divided
into training and test sets based on 10-fold cross-
validation, a process of dividing a given dataset into 10
subsets, in which 9 subsets are used for training and the
remaining one subset is used for testing the developed
model, iteratively for ten times until all subsets are used
as test set and results are averaged. Moreover, the phase
of data pre-processing saw the selection of relevant and
useful features among the features of the given dataset
through the usage of the Correlation Feature Selection
(CFS) technique, which was based on greedy-stepwise
search method.

The k-NN algorithm was implemented, and the
search for the optimal k value for each dataset was
carried out, both with the optimal k value and the
default parameter values for k-NN. Disjoint experiments
were carried out to reveal the effect of implementing
different distance weighting methods. With the optimal
k value, different experiments were carried by
implementing different distance functions of k-NN, and
thus the impact of the distance functions was evaluated.
The performances of all developed models, using
default and optimal k values, different distance
weighting methods, and different distance functions

Copyright ©2019, JTSiskom, e-ISSN: 2338-0403, p-ISSN: 2620-4002 Jurnal Teknologi dan Sistem Komputer, 7(4), 2019, 122

Figure 1. Experimental framework

were all measured, and the impact of parameter tuning
was analyzed.

B. Datasets

The datasets used in this study are five public-
domain software defect datasets provided by the
National Aeronautics Space Administration (NASA)
repository. The datasets used in this study are KC1,
KC2, KC3, MW1, PC2, and PC4. A brief description of
these datasets is provided in Table 1.

C. K nearest neighbor (KNN)

Instance Base Learner (IBL) or k-Nearest Neighbor
classifies instances based on similarities. It is a type of
lazy learning method where the function is only
approximated locally, and all computation is deferred
until classification [32]. An object is classified by a
majority of its neighbors. The k is always a positive
integer. The neighbors are selected from a set of objects
for which the correct classification is known. Whenever
there is a need for a new point to classify, its k nearest
neighbors from the training data are used in determining
the class of its replica in the test set [33]. Algorithm 1
presents the algorithm for k-NN.

D. Performance metrics

The metrics used in this study to evaluate the
performance of a classifier model are accuracy (Eq. 1),
precision (Eq. 2), recall (Eq. 3), area under curve /AUC
which shows the tradeoff between TP rate and FP rate,
and f-measure (Eq. 4) [35]. The metric values were all
computed using the statistical values of True Positive
(TP), True Negative (TN), False Positive (FP), and
False Negative (FN).

Accuracy= TP+TN
TP+FP+ FN+TN

 (1)

Precision= TP
TP+FP

 (2)

Recall= TP
TP+FN

 (3)

 FMeasure= 2×Precision×Recall
Precision+Recall

 (4)

III. RESULTS AND DISCUSSIONS

Tables 2 presents the optimal k values for k-NN
using the elbow method. From studies, it has been
gathered that obtaining the optimal k value for instance
of base learners depends on the nature of the dataset
[36], [37]. Elbow method was adopted based on
Relative Mean Square Error (RMSE) for each k Value
(1 to 15) [38]. As the value of k increases, the error rate
goes down, then stabilizes, and then rises again. The
optimum k value is at the beginning of the stable zone.

It clearly shows that using the default value of k
(usually k=1) is not the appropriate or the best value in
the context of SDP. Also, this finding further

strengthens the aim of this study of tuning parameters
appropriately in the classification task. Respective
optimal k values for the selected SDP datasets used in
this study, which are k = 3 for KC1, KC3, and PC4, and
k = 4 for KC2, MW1, and PC2.

Copyright ©2019, JTSiskom, e-ISSN: 2338-0403, p-ISSN: 2620-4002 Jurnal Teknologi dan Sistem Komputer, 7(4), 2019, 123

Table 1. Software defect datasets

Dataset
Number of
Instances

Number of
Attributes

Language

KC1 2109 22 C++
KC2 522 22 C++
KC3 458 40 C++
MW1 403 38 C
PC2 5589 37 C++
PC4 1458 38 C++

Algorithm 1. k-NN algorithm [34]

BEGIN
Build the training data set Di = { (X1, C1),..., (XN, CN)}
X = (X1,..., XN) new instance to be classified
For each labeled instance (Xi, Ci) do

If X has an unknown system call then
X is abnormal;

else then
For each process Dj in training data do

calculate Sim(X, Dj);
if Sim(X, Dj) == 1.0 then

X is normal and exit;
Order Sim(X, Di) from Lowest to highest, (i = 1,...,N);
Find K biggest scores of Sim(X, D);
Select the K nearest instances to X: DK

X;
Assign to x the most frequent class in DK

X;
Calculate Sim_Avg for k-nearest neighbours;

If Sim_Avg > threshold then
 X is normal;

else then
 X is abnormal;

 Return X;
END

Table 2. The RMSE values of different k values on
KC1, KC2, KC3, MW1, PC2, and PC4 datasets

k
RMSE

KC1 KC2 KC3 MW1 PC2 PC4
1 0.3953 0.4427 0.3488 0.3464 0.0869 0.3574
2 0.3592 0.393 0.3166 0.297 0.0732 0.3059
3 0.3476 0.3734 0.2943 0.2737 0.0697 0.2973
4 0.3416 0.3614 0.2841 0.2688 0.0685 0.293
5 0.3407 0.352 0.2848 0.2612 0.0664 0.2913
6 0.3397 0.3516 0.2838 0.2587 0.0656 0.2936
7 0.3383 0.3494 0.2841 0.2566 0.0655 0.2911
8 0.3373 0.3476 0.2834 0.2559 0.0648 0.2916
9 0.3383 0.3474 0.2833 0.255 0.0648 0.2921
10 0.3373 0.347 0.2821 0.2555 0.0647 0.2921
11 0.3365 0.3472 0.2803 0.2522 0.0647 0.2924
12 0.3355 0.3447 0.2795 0.2497 0.0648 0.2936
13 0.3361 0.3411 0.2795 0.2493 0.0648 0.2915
14 0.3359 0.3398 0.2777 0.2482 0.0648 0.2921
15 0.3351 0.3416 0.2769 0.248 0.0648 0.2926

In revealing the impact of tuning the distance weight
parameter, various methods of distance weighting (DW)
were carried out, which are no distance weight (No DW)
as default, 1/ DW , and 1−DW . These methods of
distance weighting were also experimented using the
default k-value and the optimal k value of the k-NN
algorithm. Tables 3 and 4 depict the results for these
experiments as measured using the performance metrics.

In Table 3, the average performance evaluation of k-
NN with default (k = 1) based on different metrics
(accuracy, precision, recall, f-measure, and Area Under
Curve) is presented. The essence of this analysis is to
further evaluate the effect of tuning k-NN’s distance
weighting function. With or without tuning the distance
weighting parameters, the same results were observed in
terms of the average accuracy, average precision,
average recall, and average f-measure. In contrast, the
value of the AUC varies as k = 1 with 1/ DW and
1−DW gave better AUC values of 0.715 and 0.718

respectively against NoDW of 0.618.
Further analyses were carried out to investigate the

effect of distance weighting on respective optimal k
values. As shown in Table 6, with optimal k value from
Table 4, distance weighting (1/ DW and 1−DW) had
a good effect on the optimal k values with an average
accuracy of 86.06% and 86.65% against 85.13%. There
was also a significant increase in the average recall,
average f-measure, and average AUC values, as
presented in Table 4.

Table 5 shows the results of the average
performance evaluation of k-NN distance function
techniques. By default, the Euclidean distance is used,
but from analysis, it was discovered that there are other
distance functions that can do better than Euclidean
distance. Dilca distance had the best average accuracy
(85.16%), best average precision (0.823), average recall
(0.852), average F-measure (0.832), and the be0st AUC
value (0.741) when compared with the default
Euclidean distance function. Chebyshev distance
function also had a good impact more than the
Euclidean distance with better accuracy, recall value,
and AUC. However, the Euclidean was slightly better
than Chebyshev in precision and f-measure values.

It has shown that parameter tuning in k-NN had a
positive effect on the performance of the classifier. The
k value should not be set to default (k = 1) in the
classification task as it has been proved that higher k
values performed better than the default (k = 1).
However, from our findings, there is no universal k
value as the k value varies from dataset to dataset.
Distance weighting also should be done as the k-NN
classifier got better when the distance weighting options
are considered and the other distance functions such as
Dilca Distance and Chebyshev also gave good results
when compared with default Euclidean distance.

Conclusively, k-NN parameter tuning in SDP is
highly encouraged as the predictive performance of k-
NN was better than using default parameter values. The
findings of this study on tuning parameters of classifiers
are consistent with that of Tantithamthavorn et al. [15],

and Song et al. [39] as parameter tuning has a positive
impact on classifiers in SDP.

IV. CONCLUSIONS

The experimental results revealed that parameter
tuning had a positive effect on the performance of k-NN
in SDP. The value for k should be greater than 1
(default), distance weighting option should be used, and
other distance functions can also be explored as they
gave better predictive performance than k-NN with
default parameters.

Even if SDP models are trained on a clean defect
dataset, and their respective parameters are not tuned
accordingly, SDP models may produce inaccurate
performance. To this end, parameter tuning of SDP
models is advised. It is also recommended that future
works should look into using other classification
techniques. It will enable researchers and software
engineers to get the best out of classification techniques
in SDP. Also, parameter tuning in the presence of data
quality issues such as outliers and class imbalance can
also be considered.

Copyright ©2019, JTSiskom, e-ISSN: 2338-0403, p-ISSN: 2620-4002 Jurnal Teknologi dan Sistem Komputer, 7(4), 2019, 124

Table 3. Average performance evaluation of k-NN's
distance weighting techniques based on different
metrics using default k value (k =1)

Distance Weighting No DW 1/DW 1-DW
Average Accuracy 82.05 82.05 82.05
Average Precision 0.82 0.82 0.82
Average Recall 0.82 0.82 0.82
Average F-Measure 0.82 0.82 0.82
Average AUC 0.618 0.715 0.718

Table 4. Average performance evaluation of k-NN's
distance weighting techniques based on different
metrics using optimal k values

Distance Weighting No DW 1/DW 1-DW
Average Accuracy 85.13 86.06 86.65
Average Precision 0.83 0.83 0.83

Average Recall 0.85 0.86 0.86
Average F-Measure 0.84 0.84 0.84

Average AUC 0.68 0.74 0.74

Table 5. Average performance evaluation of k-NN's
distance function techniques based on different metrics
using the optimal k value

Distance
Function

 Accuracy Precision Recall F-Measure AUC

Chebyshev 84.46 0.815 0.844 0.827 0.736
Dilca 85.16 0.823 0.852 0.832 0.741
Euclidean 84.32 0.816 0.843 0.828 0.723
Filtered 83.92 0.819 0.839 0.827 0.724
Manhattan 83.98 0.814 0.840 0.825 0.722
Minkowski 84.32 0.816 0.843 0.827 0.723

REFERENCES

[1] M. M. Ali, S. Huda, J. Abawajy, S. Alyahya, H.
Al-Dossari, and J. Yearwood, "A parallel
framework for software defect detection and
metric selection on cloud computing," Cluster
Computing, vol. 20, no. 3, pp. 2267-2281, 2017.
doi: 10.1007/s10586-017-0892-6

[2] H. B. Yadav and D. K. Yadav, "A fuzzy logic
based approach for phase-wise software defects
prediction using software metrics," Information
and Software Technology, vol. 63, pp. 44-57,
2015. doi: 10.1016/ j.infsof.2015.03.001

[3] S. Huda et al., "A framework for software defect
prediction and metric selection," IEEE access, vol.
6, pp. 2844-2858, 2018. doi: 10.1109/ACCESS.
2017.2785445

[4] Z. Li, X.-Y. Jing and X. Zhu, "Progress on
approaches to software defect prediction," IET
Software, vol. 12, no. 3, pp. 161-175, 2018. doi:
10.1049/iet-sen.2017.0148

[5] M. Tan, L. Tan, S. Dara, and C. Mayeux, "Online
defect prediction for imbalanced data," in the 37th
IEEE International Conference on Software
Engineering, Florence, Italy, May 2015, pp. 99-
108. doi: 10.1109/ICSE.2015.139

[6] C. Tantithamthavorn, S. McIntosh, A. E. Hassan,
and K. Matsumoto, "An empirical comparison of
model validation techniques for defect prediction
models," IEEE Transactions on Software
Engineering, vol. 43, no. 1, pp. 1-18, 2017. doi:
10.1109/TSE.2016.2584050

[7] X.-Y. Jing, F. Wu, X. Dong, and B. Xu, "An
improved SDA based defect prediction framework
for both within-project and cross-project class-
imbalance problems," IEEE Transactions on
Software Engineering, vol. 43, no. 4, pp. 321-339,
2017. doi: 10.1109/TSE.2016.2597849

[8] H. Tong, B. Liu, and S. Wang, "Software defect
prediction using stacked denoising autoencoders
and two-stage ensemble learning," Information
and Software Technology, vol. 96, pp. 94-111,
2017. doi: 10.1016/j.infsof.2017.11.008

[9] Ö. F. Arar and K. Ayan, "Software defect
prediction using cost-sensitive neural network,"
Applied Soft Computing, vol. 33, pp. 263-277,
2015. doi: 10.1016/j.asoc.2015.04.045

[10] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan,
"Cross-project defect prediction using a
connectivity-based unsupervised classifier," in the
38th International Conference on Software
Engineering, Austin, USA, May 2016, pp. 309-
320. doi: 10.1145/2884781.2884839

[11] A. O. Balogun, S. Basri, S. J. Abdulkadir, and A.
S. Hashim, "Performance analysis of feature
selection methods in software defect prediction: a
search method approach," Applied Sciences, vol. 9,
no. 13, pp. 1-20, 2019. doi: 10.3390/app9132764

[12] S. Herbold, A. Trautsch, and J. Grabowski, "A
comparative study to benchmark cross-project

defect prediction approaches," IEEE Transactions
on Software Engineering, vol. 44, no. 9, pp. 811-
833, 2017. doi: 10.1109/TSE.2017.2724538

[13] Y. Kamei, T. Fukushima, S. McIntosh, K.
Yamashita, N. Ubayashi, and A. E. Hassan,
"Studying just-in-time defect prediction using
cross-project models," Empirical Software
Engineering, vol. 21, no. 5, pp. 2072-2106, 2016.
doi: 10.1007/s10664-015-9400-x

[14] R. Malhotra, "A systematic review of machine
learning techniques for software fault prediction,"
Applied Soft Computing, vol. 27, pp. 504-518,
2015. doi: 10.1016/j.asoc.2014.11.023

[15] C. Tantithamthavorn, S. McIntosh, A. E. Hassan,
and K. Matsumoto, "Automated parameter
optimization of classification techniques for defect
prediction models," in the IEEE/ACM 38th
International Conference on Software
Engineering, Austin, USA, May 2016, pp. 321-
332. doi: 10.1145/2884781.2884857

[16] A. O. Balogun, S. Basri, S. J. Abdulkadir, and A.
S. Hashim, "A hybrid multi-filter wrapper feature
selection method for software defect predictors,"
International Journal of Supply Chain
Management, vol. 8, no. 2, pp. 916-922, 2019.

[17] W. Fu, T. Menzies, and X. Shen, "Tuning for
software analytics: Is it really necessary?,"
Information and Software Technology, vol. 76, pp.
135-146, 2016. doi: 10.1016/j.infsof.2016.04.017

[18] Y. Jiang, B. Cukic, and T. Menzies, "Can data
transformation help in the detection of fault-prone
modules?," in the 2008 Workshop on Defects in
Large Software Systems, Seattle, USA, Jul. 2008,
pp. 16-20. doi: 10.1145/1390817.1390822

[19] A. Tosun and A. Bener, "Reducing false alarms in
software defect prediction by decision threshold
optimization," in the 2009 3rd International
Symposium on Empirical Software Engineering
and Measurement, Florida, USA, Oct. 2009, pp.
477-480. doi: 10.1109/ESEM.2009.5316006

[20] A. G. Koru and H. Liu, "An investigation of the
effect of module size on defect prediction using
static measures," in the 2005 Workshop on
Predictor Models in Software Engineering, New
York, USA, May 2005, pp. 1-5. doi:
10.1145/1083165.1083172

[21] T. Mende, "Replication of defect prediction
studies: problems, pitfalls and recommendations,"
in the 6th International Conference on Predictive
Models in Software Engineering, Timisoara,
Romania, Sept. 2010, pp. 1-10. doi:
10.1145/1868328.1868336

[22] T. Hall, S. Beecham, D. Bowes, D. Gray, and S.
Counsell, "A systematic literature review on fault
prediction performance in software engineering,"
IEEE Transactions on Software Engineering, vol.
38, no. 6, pp. 1276-1304, 2012. doi:
10.1109/TSE.2011.103

[23] A. G. Akintola, A. O. Balogun, F. Lafenwa-
Balogun, and H. A. Mojeed, "Comparative

Copyright ©2019, JTSiskom, e-ISSN: 2338-0403, p-ISSN: 2620-4002 Jurnal Teknologi dan Sistem Komputer, 7(4), 2019, 125

https://doi.org/10.1007/s10586-017-0892-6
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1145/1868328.1868336
https://doi.org/10.1145/1083165.1083172
https://doi.org/10.1109/ESEM.2009.5316006
https://doi.org/10.1145/1390817.1390822
https://doi.org/10.1016/j.infsof.2016.04.017
https://doi.org/10.1145/2884781.2884857
https://doi.org/10.1016/j.asoc.2014.11.023
https://doi.org/10.1007/s10664-015-9400-x
https://doi.org/10.1109/TSE.2017.2724538
https://doi.org/10.3390/app9132764
https://doi.org/10.1145/2884781.2884839
https://doi.org/10.1016/j.asoc.2015.04.045
https://doi.org/10.1016/j.infsof.2017.11.008
https://doi.org/10.1109/TSE.2016.2597849
https://doi.org/10.1109/TSE.2016.2584050
https://doi.org/10.1109/ICSE.2015.139
https://doi.org/10.1049/iet-sen.2017.0148
https://doi.org/10.1109/ACCESS.2017.2785445
https://doi.org/10.1109/ACCESS.2017.2785445
https://doi.org/10.1016/j.infsof.2015.03.001

analysis of selected heterogeneous classifiers f
analysis of gray code number system in image
security or software defects prediction using filter-
based feature selection methods," FUOYE Journal
of Engineering and Technology, vol. 3, no. 1, pp.
134-137, 2018.

[24] R. Jimoh, A. Balogun, A. Bajeh, and S. Ajayi, "A
PROMETHEE based evaluation of software defect
predictors," Journal of Computer Science and Its
Application, vol. 25, no. 1, pp. 106-119, 2018.

[25] M. A. Mabayoje, A. O. Balogun, S. M. Bello, J. O.
Atoyebi, H. A. Mojeed, and A. H. Ekundayo,
"Wrapper feature selection based heterogeneous
classifiers for software defect prediction," Adeleke
University Journal of Engineering and
Technology, vol. 2, no. 1, pp. 1-11, 2019.

[26] A. O. Balogun, R. O. Oladele, H. A. Mojeed, B.
Amin-Balogun, V. E. Adeyemo, and T. O. Aro,
"Performance analysis of selected clustering
techniques for software defects prediction,"
African Journal of Computing & ICT, vol. 12, no.
2, pp. 30-42, 2019.

[27] T. G. Grbac, G. Mausa, and B. D. Basic, "Stability
of software defect prediction in relation to levels
of data imbalance," in the 2nd Workshop on
Software Quality Analysis, Monitoring,
Improvement, and Applications, Novi Sad, Serbia,
Sept. 2013, pp. 1-10.

[28] Q. Yu, S. Jiang, and Y. Zhang, "The performance
stability of defect prediction models with class
imbalance: an empirical study," IEICE
Transactions on Information and Systems, vol.
100, no. 2, pp. 265-272, 2017.

[29] S. Bibi, G. Tsoumakas, I. Stamelos, and I. P.
Vlahavas, "Software defect prediction using
regression via classification," in IEEE
International Conference on Computer Systems
and Applications, Dubai, UAE, Mar. 2006, pp.
330-336. doi: 10.1109/AICCSA.2006.205110

[30] P. Singh and S. Verma, "Automated tool for
extraction of software fault data," in Advances in
Data and Information Sciences: Springer, 2018,
pp. 29-37. doi: 10.1007/978-981-10-8360-0_3

[31] M. Tan, L. Tan, S. Dara, and C. Mayeux, "Online
defect prediction for imbalanced data," in the 37th
Internation Conference on Software Engineering,
Florence, Italy, May 2015, pp. 99-108.

[32] G. I. Salama, M. Abdelhalim, and M. A.-e. Zeid,
"Breast cancer diagnosis on three different datasets
using multi-classifiers," International Journal of
Computer and Information Technology, vol. 1, no.
1, pp. 36-43, 2012.

[33] Y. A. Christobel and P. Sivaprakasam, "A new
classwise k nearest neighbor (CKNN) method for
the classification of diabetes dataset,"
International Journal of Engineering and
Advanced Technology, vol. 2, no. 3, pp. 396-200,
2013.

[34] Y. Liao and V. R. Vemuri, "Use of k-nearest
neighbor classifier for intrusion detection,"
Computers & Security, vol. 21, no. 5, pp. 439-448,
2002. doi: 10.1016/S0167-4048(02)00514-X

[35] M. Mabayoje, A. Balogun, A. Bajeh, and B. Musa,
"Software defect prediction: effect of feature
selection and ensemble methods," FUW Trends in
Science & Technology Journal, vol. 3, no. 2, pp.
518-522, 2018.

[36] P. Hall, B. U. Park, and R. J. Samworth, "Choice
of neighbor order in nearest-neighbor
classification," The Annals of Statistics, vol. 36,
no. 5, pp. 2135-2152, 2008. doi: 10.1214/07-
AOS537

[37] R. J. Samworth, "Optimal weighted nearest
neighbour classifiers," The Annals of Statistics,
vol. 40, no. 5, pp. 2733-2763, 2012. doi:
10.1214/12-AOS1049

[38] T. M. Kodinariya and P. R. Makwana, "Review on
determining number of cluster in k-means
clustering," International Journal of Advanced
Research in Computer Science and Management
Studies, vol. 1, no. 6, pp. 90-95, 2013.

[39] L. Song, L. L. Minku, and X. Yao, "The impact of
parameter tuning on software effort estimation
using learning machines," in the 9th International
Conference on Predictive Models in Software
Engineering, Maryland, USA, Oct. 2013, pp. 1-10.
doi: 10.1145/2499393.2499394

Copyright ©2019, JTSiskom, e-ISSN: 2338-0403, p-ISSN: 2620-4002 Jurnal Teknologi dan Sistem Komputer, 7(4), 2019, 126

https://doi.org/10.1145/2499393.2499394
https://dx.doi.org/10.1214/12-AOS1049
https://dx.doi.org/10.1214/07-AOS537
https://dx.doi.org/10.1214/07-AOS537
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1007/978-981-10-8360-0_3
https://doi.org/10.1109/AICCSA.2006.205110

	I. Introduction
	II. Research methods
	A. Experimental framework
	B. Datasets
	C. K nearest neighbor (KNN)
	D. Performance metrics

	III. Results and discussions
	IV. Conclusions
	References

