
Available at https://jtsiskom.undip.ac.id
DOI:10.14710/jtsiskom.2022.14120

Jurnal Teknologi dan Sistem Komputer, 10(2), 2022, 60-66

Large-scale integrated infrastructure for asynchronous microservices
architecture

Insan Ramadhan*), Gladhi Guarddin

Faculty of Computer Science, University of Indonesia
Kampus UI Depok, Depok, Jawa Barat 16424, Indonesia

How to Cite: I. Ramadhan and G. Guarddin, "Integrated Multiplatform Infrastructure for Asynchronous
Microservices Architecture" Jurnal Teknologi dan Sistem Komputer, vol. 10, no. 2, pp. 60-66, 2022. DOI:
10.14710/jtsiskom.2022.14120, [Online].

Abstract - Integrated large-scale business activities
increasingly rely on the use of remote resources and
services across multi-platform applications.
Microservice in previous research has become a
solution, but this approach still leaves a data loss
problem. This research methodology proposed an
architecture of data transmission managed by
messaging service to prevent data loss in handling
many requests to deliver a multiplatform architecture,
handling the plugin services, and enabling escalation
based on the requirement. As a result, this research
successfully implements large-scale multiplatform
Single Sign-On (SSO) infrastructure for asynchronous
microservices architecture. The system test results
show that the developed system can handle up to 2000
requests with 20 concurrent requests.

Keywords - SSO; CAS; OAuth; RabbitMQ;
microservices

I. INTRODUCTION

Integrated large-scale business activities
increasingly rely on the use of remote resources and
services across multi-platform applications. The
considerable number of resources and services often
requires multiple log-on, leading to credential
proliferation and, potentially, security leaks.
Implementation of Single Sign-On (SSO) can unify the
authentication processes existing on various applications
to provide centralized authentication and user data
management services to support system integration [1],
[2]. Large-scale infrastructure is discussed in [3], one of
the performance measurements using a concurrent
network through a queue, the same will be used in this
study as a test parameter.

Over the past few years, microservices, also known
as micro-services architecture, have emerged as the
architectural style that structures an application to
collect loosely coupled services to implement business
capabilities. Services are modeled as isolated units, each of
which can use the type of database best suited to its needs.

Compared to Service Oriented Architecture, SOA
needs to share the data source with other services,
causing difficulty when scaling the system. Besides, if
the Enterprise Service Bus (ESB) error occurs, it will
become a single point of failure that impacts the entire
application. In contrast to the microservices, other
services remain working, even though one of the
services fails [4].

Microservices architecture was discussed in research
[5], [6], such as implementing an architectural pattern,
utilizing load balancers as load sharing management,
and API gateway. The architecture consists of gateway
and microservices codebase. Each codebase contains a
load balancer and several webservers. Server scalability
is resolved horizontally by increasing the number of
codebase packages, and vertically by increasing
hardware capacity.

Another research utilizes a web layer as an interface
as well as a load balancer. It sends the request to the
API gateway layer and later sends the response back to
the original requester. Depending on the
implementation, if there are multiple API gateways, the
web layer acts as a reverse proxy and proxies the
request to a specified API gateway and gets the
response [7].

All those previous research focuses on load distribution
using a load balancer where large-scale middleware can be
scaled up as needed. This approach still has a weakness,
where shortcomings occurred when loads culminated. The
delivered requests may be lost due to exceeding the
defined timeout. The absence of notifications causes errors
on the client side. Escalating the number of codebase
packages caused costs to increase.

This paper will focus on shortcomings problems
when load culminated on large-scale middleware by
implementing a messaging queue service to deliver an
asynchronous architecture approach. Clients' requests
will not be lost due to exceeding the defined timeout,
and the client indeed receives response data resources
from the server as expected to solve those problems.

In this paper, we describe the design and
implementation of large-scale SSO and microservices
architecture with message queue services, accessed
through multiplatform applications such as web and
mobile applications This research aims to build flexible
and scalable authentication and transactional system.

Copyright ©2022, The authors. Published by Department of Computer Engineering, Universitas Diponegoro
 Submitted: 28 May 2021; Revised: 8 February 2022; Accepted: 1 March 2022; Published: 30 April 2022

*) Correspondence author (Insan Ramadhan)
Email: insan.ramadhan@ui.ac.id

https://dx.doi.org/10.14710/jtsiskom.2022.14120
https://crossmark.crossref.org/dialog/?doi=10.14710/jtsiskom.2022.14120&domain=pdf&date_stamp=2022-04-30

The modules and applications as plugin services are
appropriate for large-scale

II. METHODOLOGY

The stages carried out in this study are system
analysis, system design, implementation, and testing.

A. System Analysis

The initial stage of this study is analyzed the major
influence in building an integrated large-scale
architecture, consisting of microservices and message
queues. Microservices architecture has an advantage in
developing large-scale systems such as highly
maintainable and testable, loosely coupled,
independently deployable, and organized around
business capabilities. The architecture is suitable to
solve problems in the SOA architecture which described
is in Figure 1.

Figure 2 described modern cloud architecture,
applications are decoupled into smaller, independent
building blocks that are easier to develop, deploy and
maintain. Message queues provide communication and
coordination for these distributed applications. Message
queues can significantly simplify the coding of
decoupled applications while improving performance,
reliability, and scalability.

To support the integration of multiplatform
applications, we add Single Sign-On (SSO) mechanism.
Single Sign-On is a technology that provides a single
entry point to the corporate network while giving the
user the ability to move from one portal to another
without re-authentication and using portals as the
preferred mechanism of interaction with the end-user

[8]. This research combines Single Sign-On (SSO),
microservices, and message queues to deliver an
architecture that can handle large-scale loads and
requests for the multiplatform application.

B. System Design

The purpose of this stage is to describe the system
architecture and use case, where the user can access
system resources within credentials from different
platforms and send a request through microservices and
message queue mechanisms to handle large requests from
a user. This research designed an architecture that
consists of a use case, is created to access the two
applications and data using the same credentials with
centralized security filtering profiling. Figure 3 describes
the systems architecture developed in this research.

To simulate the process, actors involved in the
business process can log in through the dashboard
domain or directly to the application through web and
mobile applications which are described in Figure 4.
Accessing the resources from a browser, an
authentication process is needed. Meanwhile, the one
through mobile application involves an authentication
and authorization process to gain data resources.

C. Implementation and testing

From the results of the system design, the
integration of multiplatform with the asynchronous
process will be discussed from the multiplatform part,

Copyright ©2022, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 10(2), 2022, 61

Figure 1. Microservices architecture

Figure 2. Message queue

Figure 3. System architecture

Figure 4. System use case

authentication part, and integration part. In addition, the
system will be applied in some cases.

Internal testing was conducted to ensure that the
system runs as expected, where several testing scenarios
were carried out against three stand-alone applications.
Dashboard Application (DAP) and WordPress
Application (WAP) tested on the Authentication
Process; meanwhile, Mobile Application (MAP) tried
on Authentication Process, Authorization Process, and
Messaging Process.

III. RESULT AND DISCUSSION

This chapter explains the implementation of the
proposed integrated infrastructure for asynchronous
microservices architecture.

A. Implementation

Based on figure 3, the architecture consists of 3
main parts. The first part is a multiplatform part which
consists of mobile applications and web applications.
The second part is the authentication part which consists
of CAS and Oauth2.0. The last part is the integration
part which consists of microservices gateway, message
queue, and microservices agent.

A simple mobile and web application was developed
to simulate the process of user interaction. Both of the
applications utilized a user interface.

This research implements CAS Single Sign-On
(SSO) with OAuth on Microservices Gateway (MG)
side rather than on the CAS side for the reason of
making OAuth a standalone service rather than a service
attached to CAS. This will facilitate further
development when CAS technology is to be replaced in
the future.

Various properties can be specified in CAS inside
configuration files. Several CAS configuration options
equally apply to several modules and features [9]. We
configured the properties file as-is architecture
proposed. Service registry auto-initialize from the
default JSON file and set the path to JSON file location.
MySql as authentication database configured in
properties files either, including redirected URL
connection of application URL path, query expression
dialect using MySQLDialect and MySql driver class
using JDBC driver. CAS can add arbitrary attributes to a
registered service defined inside the CAS properties".
For every new application plugged in, new services
must be registered. This research workout is limited to
three web applications for simulation, including
dashboard application, WordPress application, and
simple custom application. JSON file service needs to
create, as mentioned in CAS properties. This registry
inside CAS properties consists of field class set to
org.apereo.cas.services.RegexRegisteredService, service
set to list of application path, id is the self-defined
unique number

CAS authentication model is loosely based on
classic Kerberos-style authentication. An

unauthenticated user sends a service request redirected
to the authentication server (CAS Server), the
authenticated user returns to the application. CAS
manages certified identities and entities' passwords.
CAS X.509 authentication components provide a
mechanism to authenticate users who present client
certificates during the SSL/TLS handshake process.
X.509 is a standard format for public key certificates,
digital documents that securely associate cryptographic
key pairs with identities such as websites, individuals,
or organizations [10]. This research requires a certified
Secured Socket Layer (SSL) in its implementation.

Figure 5 describes the workflow of SSO-CAS. A
client sends a request to access data resources from a
browser platform; the application then checks CAS
authentication status. The system will redirect the
unauthenticated user to the CAS login URL, rather than
to the application. CAS login session and ticket id
generate and authenticate which user can access
application within the session time. Application checks
authentication status through validation URL every time
user sends a request to the application. Unlike browser
clients, mobile applications access resources through a
sequential process. Starting by accessing CAS login
URL to get authenticated status, Ticket ID, and session
generated. Authorization request to OAuth as the second
step, and the token generated as OAuth response. Token
serves as a bearer in the parameter header such as ticket
ID, and application ID every time request GET/ POST
method is sent to microservices.

The OAuth 2.0 allows third-party applications to
access protected resources in a standardized way [11].
The third party commonly hires the OAuth 2.0 protocol
for authorization to access a service source [12]. It is

Copyright ©2022, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 10(2), 2022, 62

Figure 5. SSO-CAS workflow

Figure 6. OAuth workflow

most commonly implemented as a robust authorization
framework in its ability and flexibly implemented on
different systems and purposes as described in Figure 6.

The OAuth 2.0 protocol permits a third-party client
such as an application to access a server's resources
(user's profile information) with rules and permissions
in a way that avoids exchanging the user's credentials
[13]. This research serves OAuth as a service; a module
is built, integrated with CAS by utilizing a library called
phpCAS. The authorization process was conducted after
authentication was successful, which was achieved by
calling the CAS authentication status. Dashboard
application also requires this function to enable the
authentication process

The microservices architecture consists of service
collection, single service independently deployed and
loosely coupled by utilizing Restful API technology,
reducing service complexity was made. This research
uses static microservices rather than dynamic
microservices, the main reason is static type
microservices are fully loaded with filtered and
aggregated data and these are fast in execution compared
with the dynamically created microservices [14].

Figure 7 described data filtering on the
microservices gateway. MG as a gate to accessing
resources and security tool to prevent accessing
resources when tokens and tickets have expired or the
service received a broken message. Return with error
response code will be delivered as an acknowledgment
to user and back to the login page is a flow need to
execute after.

The message queuing is an alternative to
Classifications, which are complementary to the
publish/subscribe model of a distributed information
system [15]. Considering a large number of requests at
the same time, this research placed AMQP (Advanced
Message Queuing Protocol) based RabbitMQ as
middleware.

 RabbitMQ is the most widely deployed and popular
open-source message broker. It’s written in Erlang and
is backed by the Pivotal Software Foundation [16].

Figure 8 describes the proposed architecture that
consists of Microservices gateway (MG) and Agent
(MA), where both of them act as RabbitMQ publishers
and consumers in a different mode. MG is configured as
exchange declare while MA is as queue declare.

Exchange Declare delivers a message to multiple
consumers. This pattern is known as
"publish/subscribe". The publish-subscribe (pub/sub)
concept is a prevalent communication paradigm that is
used across a wide range of application domains
because it provides an efficient and elegant way to
decouple content producers (publishers) from content
consumers (subscribers) [17]. Exchanges take a
message and route it into zero or more queues [15].
Microservices gateway as a publisher, a direct exchange
delivers messages to queue based on application id as a
message routing key. Ticket ID, Application ID, Token
ID, and Request ID from the client, are put as arrays of
a parameter. This explanation is already described in
Figure 8 point 1.

A subscriber registers its interesting “Topic” in the
form of a subscription. Messages are published to the
message broker. This model allows publishers and
subscribers to communicate without knowing each
other’s information [18]. Figure 8 point 2 described a
binding relationship between an exchange and a queue.
A Queue is interested in messages from this exchange.
The MA message queue exchange declares mode is
necessary to receive a message from the gateway
service. Figure 8 points 3 and 4 described both
microservices (gateway and agent) performing as
publisher and subscriber at once. Service agent as
publisher and gateway as subscriber set in queue declare
mode. Work Queues avoid doing a resource-intensive
task immediately and having to wait for it to complete.
The task encapsulated a message and send it to the queue.

Copyright ©2022, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 10(2), 2022, 63

Figure 8. Microservices asynchronous workflow

Figure 7. Microservices asynchronous workflow

Figure 9. Content control configuration

In enabling the WordPress CAS authentication,
some plugins need to install. Content Control plugin is
required to define protected content and CAS login
URL redirection. Figure 9 shows the configuration in
this research. WP Cassify plugin is essential to activate
the CAS integration. This research generates custom
authorization rules according to the populated CAS User
Attributes. It also configures the plugin, as illustrated in
Figure 10.

This research develops a cross-platform React
Native Mobile Application. React Native (RN) is a
cross-platform mobile application development
framework acknowledged as an open-source framework
by Facebook in April 2015. It combines the best parts of
React Native development, a best-in-class JavaScript
library for building user interfaces [19].

Application Programming Interfaces (APIs) enable
communication between disparate software applications
[20]. An API typically uses the REST design paradigm
to manage all the ways that anyone can access. That is
the best practice to integrate with CAS and OAuth
through API fetching. The sequence of data sources
accessed must follow the architecture determined in this
research.

CAS should be authenticated before requesting the
token authorization. The granted authentication process
will return the ticket and user attribute. Fetching OAuth
service endpoint utilizes ticket and user as the request
parameters. Ticket and Token authorization resulting
from the OAuth service will be used in the whole
process of accessing data sources through messaging
service. Figure 11 describes the flowchart of a business
process in general.

Web applications and dashboards are accessed
directly through CAS as a sign-on module connected to
MySQL as a user management database. A portal is
built separately to manage user roles. It's different from
a mobile application that accesses data through
synchronous and asynchronous processes after CAS
authentication

We put rabbitMQ in the middle of microservices to
transmit data messaging asynchronously. The OAuth2.0
and JWT token is placed to secure the data pipeline
between the microservices module and database
application.

B. Testing

Testing performed on a local server environment
with hardware specification of MacBook Pro (15-inch,
2017), Processor 2,8 GHz Quad-Core Intel Core i7,
Memory 16 GB 2133 MHz LPDDR3, Graphic Card
Intel HD Graphics 630 1536 MB. Operating System
macOS Catalina version 10.15.6.

Functional tests were carried out with 8 test
scenarios covering all existing modules. It starts with
the CAS SSO Authentication testing on dashboard
applications, WordPress applications, and mobile
applications, OAuth authorization testing on mobile
applications, and message delivery testing on the
microservices gateway and agent modules.

The functional test results indicate that all modules
are running and provide requests and responses as
planned. The system is protected by the authentication
and authorization process. The messaging works well,
no lost requests when the service is down, and the data
transmission runs automatically when the service restart,
as shown in Tabel 1.

Loading tests are conducted to ensure the system can
run on a large scale. The test utilizes Apache
Benchmark with the number of requests between 1000 -
2000 on 1-30 concurrent requests as illustrated in Figure
12.

Copyright ©2022, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 10(2), 2022, 64

Figure 10. WP cassify configuration

Figure 11. Mobile application flowchart

Figure 12. Load testing result

The test results indicate that all requests were
successfully responded to without any failure, even
though the response time increased, the message was
kept received and processed. At concurrent 2 ~ 10, time-
consuming increased significantly, above 10 ~ 15
concurrency showed decreased response time. For 15 ~
30 showed a plateau graph that indicates able to handle
more concurrency requests approximately the same
result.

The result shows the architecture can handle
problems without loss of transaction data when one of
the services is down, in addition, the architecture
developed can handle large-scale requests sent from
multiplatform applications. The approach used in this
research found that the system never reaches a
culminated condition. Figure 12 indicates that
monitoring system and scalability adjustment which is
needed in previous research [5]-[7] can be solved using
the proposed architecture. There was a significant
increase in response time on the first iteration, but
response time becomes stable after passing a certain
phase even though services were down.

This research also found that the approach used in
this research present a new behavior or user
characteristic where the users must not expect an
immediate result of their request. From an infrastructure
point of view, the effect of this approach is the requester
does not overload the limitations of a server and from
the requester’s point of view, the requester is known
that the request will be processed and will get the
response when it is ready.

IV. CONCLUSION

This research succeeded in creating a large-scale
architecture through the implementation of asynchronous
messaging and microservices. The functional test result
shows the system can handle requests without any
losing transactions when one or more services were
down. This result can be a solution of Service Oriented
Architecture (SOA) when a single point of failure
impacts the entire application and the load test result
shows that the system able to handle large-scale
requests as a solution for load distribution. Even though

the test results show an increase in response time but the
system can handle requests without any lost
transactions.

Future research is enhanced with an orchestrator
module that functions to manage MG data flow to MA
and vice versa. Every newly added application service is
done by updating the orchestration module. Network
latency and server specification are not included as test
parameters in this study as a limitation.

REFERENCE

[1] I. P. A. Pratama, L. Linawati, and N. P. Sastra,
“Token-based single sign-on with JWT as
information system dashboard for government,”
Telkomnika (Telecommunication Computing
Electronics and Control., vol. 16, no. 4, pp. 1745–
1751, 2018. doi: 10.12928/TELKOMNIKA.
v16i4.8388

[2] A. I. Ivanova and S. Vodanovich, "Single sign-on
taxonomy," in IEEE 21st International Conference
on Computer Supported Cooperative Work in
Design, Wellington, New Zealand, Apr. 2017, pp.
151-155. doi: 10.1109/ CSCWD.2017.8066686

[3] S. Herrero-Lopez, J. R. Williams and A. Sanchez,
"Large-Scale simulator for global data
infrastructure optimization," in 2011 IEEE
International Conference on Cluster Computing,
Austin, TX, USA, Sept. 2011, pp. 54-64. doi:
10.1109/CLUSTER.2011.15

[4] R. Wongsakthawom and Y. Limpiyakorn,
“Development of IT helpdesk with microservices,”
in 8th International Conference on Electronics
Information and Emergency Communication,
Beijing, China, June 2018, pp. 31–34. doi:
10.1109/ICEIEC.2018. 8473557

[5] A. Akbulut and H. G. Perros, "Software versioning
with microservices through the API gateway
design pattern," in 9th International Conference on
Advanced Computer Information Technologies,
Ceske Budejovice, Czech Republic, June 2019, pp.
289-292. doi: 10.1109/ACITT.2019.8779952

[6] M. Villamizar, O. Garcés, H. Castro, M. Verano, L.
Salamanca, and S. Gil, “Evaluating the monolithic

Copyright ©2022, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 10(2), 2022, 65

Tabel 1. Functional testing result

No Test Item Condition Expected Result Result
1 DAP Not Authenticated Redirect to CAS login URL Passed
2 DAP Authenticated Dashboard URL Passed
3 WAP Not Authenticated Redirect to CAS login URL Passed
4 WAP Authenticated WordPress URL Passed
5 MAP Not Authenticated Redirect to CAS login URL Passed
6 MAP Not Authorized Redirect to CAS login URL Passed
7 MAP MG Down Up Message Pending Received Passed
8 MAP MA Down Up Message Pending Received Passed
9 MAP MG Token Not Authorized Redirect to Login Page Passed
10 MAP MG Ticket Expired Redirect to Login Page Passed
11 MAP MG Receive broken JSON Message Redirect with a failure message Passed

https://dx.doi.org/10.1109/ACITT.2019.8779952
https://dx.doi.org/10.1109/ICEIEC.2018.%208473557
https://dx.doi.org/10.1109/CLUSTER.2011.15
https://dx.doi.org/10.1109/%20CSCWD.2017.8066686
https://dx.doi.org/10.12928/TELKOMNIKA.%20v16i4.8388
https://dx.doi.org/10.12928/TELKOMNIKA.%20v16i4.8388

and the microservice architecture pattern to deploy
web applications in the cloud,” in 10th Computing
Colombian Conference, Bogota, Colombia, Sept.
2015, pp. 583–590. doi:
10.1109/ColumbianCC.2015.7333476

[7] D. Malavalli and S. Sathappan, “Scalable
microservice-based architecture for enabling
DMTF profiles,” in 11th International Conference
on Network and Service Management, Barcelona,
Spain, Nov. 2015, pp. 428–432. doi:
10.1109/CNSM.2015 .7367395

[8] S. A. Lazarev, A. V. Demidov, V. N. Volkov, A.
A. Stychuk, and D. A. Polovinkin, “Analysis of
applicability of open single sign-on protocols in
distributed information-computing environment,”
in IEEE 10th International Conference on
Application of Information and Communication
Technologies, Baku, Azerbaijan, July 2017, pp. 1-
5. doi: 10.1109/ICAICT.2016. 7991757

[9] CAS Properties. (2020, Dec 10). Retrieved from
https://apereo.github.io/cas/5.1.x/installation/Confi
guration-Properties.html

[10] C. A. Ardagna, E. Damiani, S. De Capitani di
Vimercati, F. Frati, and P. Samarati, “CAS++: An
open-source Single Sign-On solution for secure e-
services,” in IFIP International Information
Security Conference, Karlstad, Sweden, 22-24
May 2006, vol. 201, pp. 208–220. doi: 10.1007/0-
387-33406-8_18

[11] D. Hardt, The OAuth 2.0 Authorization Framework
[online]. Available :
https://tools.ietf.org/pdf/rfc6749.pdf

[12] S. R. Oh and Y. G. Kim, “Interoperable OAuth 2.0
Framework,” in International Conference on
Platform Technology and Service (PlatCon), Jeju,
Korea (South), Jan. 2019, pp. 2–6. doi:
10.1109/PlatCon.2019.8668962

[13] M. Darwish and A. Ouda, “Evaluation of an OAuth
2.0 protocol implementation for web server
applications,” in International Conference and
Workshop on Computing and Communication,

Vancouver, BC, Canada, Oct. 2015, pp. 2–5. doi:
10.1109/IEMCON.2015.7344461

[14] M. A. Jarwar, S. Ali, and I. Chong, “Microservices
model to enhance the availability of data for
buildings energy efficiency management services,”
Energies, vol. 12, no. 3, 2019. doi:
10.3390/en12030360

[15] M. Rostanski, K. Grochla, and A. Seman,
“Evaluation of highly available and fault-tolerant
middleware clustered architectures using
RabbitMQ,” in Federated Conference on
Computer Science and Information Systems,
Warsaw, Poland, Sept. 2014, vol. 2, pp. 879–884.
doi: 10.15439/2014F48

[16] Saeed Ahmad. (2020, Nov.14). A Look at Different
Open Source Message Brokers [online]. Available:
https://mrsaeeddev.medium.com/a-look-at-
different-open-source-message-brokers-
314862a222ac

[17] J. Gascon-Samson, F. P. Garcia, B. Kemme, and J.
Kienzle, “Dynamoth: a scalable pub/sub
middleware for latency-constrained applications in
the cloud,” in IEEE 35th International Conference
on Distributed Computing Systems, Columbus,
OH, USA, Jul. 2015, pp. 486–496, 2015. doi:
10.1109/ICDCS.2015.56

[18] J. Y. Byun, Y. Kim, A. Y. Son, E. N. Huh, J. H.
Hyun, and K. K. Kang, “A real-time message
delivery method of publishing/subscribe model in
distributed cloud environment,” in IEEE
International Conference on Cybernetics and
Computational Intelligence, Phuket, Thailand,
Nov. 2017, pp. 102–107. doi:
10.1109/CYBERNETICSCOM.2017. s8311692.

[19] P. Giampedraglia. (2020, June.16) Operators of
Genetic Algorithm [online]. Available:
https://www.asapdevelopers.com/best-cross-
platform-frameworks/

[20] API Management. (2020, Dec 17). Retrieved from
https://aws.amazon.com/id/api-gateway/api-
management

©2022. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright ©2022, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 10(2), 2022, 66

https://creativecommons.org/licenses/by-sa/4.0/
https://aws.amazon.com/id/api-gateway/api-management
https://aws.amazon.com/id/api-gateway/api-management
https://www.asapdevelopers.com/best-cross-platform-frameworks/
https://www.asapdevelopers.com/best-cross-platform-frameworks/
https://dx.doi.org/10.1109/CYBERNETICSCOM.2017.%20s8311692
https://dx.doi.org/10.1109/ICDCS.2015.56
https://mrsaeeddev.medium.com/a-look-at-different-open-source-message-brokers-314862a222ac
https://mrsaeeddev.medium.com/a-look-at-different-open-source-message-brokers-314862a222ac
https://mrsaeeddev.medium.com/a-look-at-different-open-source-message-brokers-314862a222ac
https://dx.doi.org/10.15439/2014F48
https://dx.doi.org/10.3390/en12030360
https://dx.doi.org/10.1109/IEMCON.2015.7344461
https://dx.doi.org/10.1109/PlatCon.2019.8668962
https://tools.ietf.org/pdf/rfc6749.pdf
https://dx.doi.org/10.1007/0-387-33406-8_18
https://dx.doi.org/10.1007/0-387-33406-8_18
https://apereo.github.io/cas/5.1.x/installation/Configuration-Properties.html
https://apereo.github.io/cas/5.1.x/installation/Configuration-Properties.html
https://dx.doi.org/10.1109/ICAICT.2016.%207991757
https://dx.doi.org/10.1109/CNSM.2015%20.7367395
https://dx.doi.org/10.1109/ColumbianCC.2015.7333476

	I. Introduction
	II. Methodology
	A. System Analysis
	B. System Design
	C. Implementation and testing

	III. Result and Discussion
	A. Implementation
	B. Testing

	IV. Conclusion
	Reference

