
Available at https://jtsiskom.undip.ac.id (31 October 2021)
DOI:10.14710/jtsiskom.2021.13970

Jurnal Teknologi dan Sistem Komputer, 9(4), 2021, 191-198

Real-time currency recognition on video using AKAZE algorithm

Faisal Dharma Adhinata*), Rifki Adhitama, Alon Jala Tirta Segara

Department of Software Engineering, Faculty of Informatics, Institut Teknologi Telkom Purwokerto
Jl. D. I. Panjaitan No. 128, Purwokerto, Jawa Tengah 53147, Indonesia

How to Cite: F. D. Adhinata, R. Adhitama, and A. J. T. Segara, "Real-time currency recognition on video using
AKAZE algorithm," Jurnal Teknologi dan Sistem Komputer, vol. 9, no. 4, pp. 191-198, 2021. doi:
10.14710/jtsiskom.2021.13970, [Online].

Abstract – Currency recognition is one of the essential
things since everyone in any country must know
money. Therefore, computer vision has been developed
to recognize currency. One of the currency recognition
uses the SIFT algorithm. The recognition results are
very accurate, but the processing takes a considerable
amount of time, making it impossible to run for real-
time data such as video. AKAZE algorithm has been
developed for real-time data processing because of its
fast computation time to process video data frames.
This study proposes the faster real-time currency
recognition system on video using the AKAZE
algorithm. The purpose of this study is to compare the
SIFT and AKAZE algorithms related to a real-time
video data processing to determine the value of F1 and
its speed. Based on the experimental results, the
AKAZE algorithm is resulting F1 value of 0.97, and
the processing speed on each video frame is 0.251
seconds. Then at the same video resolution, the SIFT
algorithm results in an F1 value of 0.65 and a speed of
0.305 seconds to process one frame. These results
show that the AKAZE algorithm is faster and more
accurate in processing video data.

Keywords - currency recognition; SIFT algorithm;
AKAZE algorithm; real-time video data

I. INTRODUCTION

Object recognition is the process of identifying
objects based on the characteristics of an object in a
digital image or video. The characteristics of an object
are often called features of the object. There is a feature
extraction stage in image or video data processing. The
human eye can easily recognize an object, but the
computer requires several features to process, such as
the color, size, and shape of an object [1]. Object
recognition using computers has developed in everyday
life, including the recognition of aircraft and ships [2],
recognition of butterflies, ants, cameras, and faces [3],
and also currency recognition [4]. One of the objects
that the researcher developed is currency objects. The
recognition of currency objects is beneficial because
everyone knows money. Even those who are illiterate
can recognize the type of money.

Some of the techniques developed in currency
recognition are template matching [4] and machine
learning [1]. In the template matching technique, the
stage that most influences the object recognition result
is feature extraction. The feature extraction algorithm
greatly determines the accuracy and speed of object
matching, especially in the video data processing. Video
data processing is done by extracting the video into
frames. Object recognition is done by extracting the
features contained in the object. Two types of features
are extracted from the frame or image, namely local
feature [5] and global feature [6]. Global features are
usually used to detect objects and classify them. Instead,
local features are used for object recognition or
identification.

Some of the local feature extraction algorithms are
SIFT [7], SURF [8], ORB [9], and AKAZE [10].
Research by Jing Xu et al. [4] introduced currency coin
recognition using the SIFT algorithm. The research
results are very accurate, but the matching takes 0.59
seconds. This speed makes the system unable to run in
real-time processing. Furthermore, researchers have also
solved the currency recognition problem by using deep
learning techniques [11], [12]. The use of deep learning
requires the data to be trained in advance for a long
time. Therefore, another technique that does not involve
training in currency recognition is needed.

Several studies used the AKAZE template matching
algorithm in different case studies. Research by
Kuznetsov and Savchenko [5] used the AKAZE
algorithm to detect logos of sports teams. Using the
AKAZE algorithm for a matching logo results in a more
optimal F1 value than other feature extraction algorithms.
AKAZE algorithm only spends 0.15 seconds to process
each video frame [13]. Using AKAZE in previous
research resulted in the optimal value of F1 and speed.

This study proposes the use of the AKAZE
algorithm for real-time currency recognition. This
research will use a template matching approach with a
suitable method for real-time processes with no training
process as in the stages of deep learning. For
comparison, we also use the SIFT algorithm to compare
the F1 value and speed to the AKAZE algorithm. In the
end, we will discuss the suitable algorithm for the case
of real-time currency recognition on video.

This paper is organized into four sections. The first
section is an introduction, while section 2 describes the

Copyright ©2021, The authors. Published by Department of Computer Engineering, Universitas Diponegoro
 Submitted: 3 November 2020; Revised: 7 July 2021; Accepted: 18 July 2021; Published: 31 October 2021

*) Corresponding author (Faisal Dharma Adhinata)
Email: faisal@ittelkom-pwt.ac.id

https://dx.doi.org/10.14710/jtsiskom.2021.13970
https://dx.doi.org/10.14710/jtsiskom.2021.13970
https://dx.doi.org/10.14710/jtsiskom.2021.13970
https://crossmark.crossref.org/dialog/?doi=10.14710/jtsiskom.2021.13970&domain=pdf&date_stamp=2021-10-31

methods used in this study. Next, section 3 discusses the
results and evaluation of this system. The last section
contains conclusions and suggestions for further work.

II. RESEARCH METHODS

The currency recognition system starts with
acquiring video data and the query image. Video data is
extracted into frames for the next stage of processing.
The large query image is resized to be matched with the
currency object contained in the video. Then, both query
image and video frames are carried out by feature
extraction using the SIFT or AKAZE algorithm. The
results of feature extraction are keypoints and
descriptors of features.

Keypoints are unique coordinate points as object
features, while descriptors are numbers that define
keypoints. The next stage is matching the descriptor in the
query image and the video frame. The matching features of
the SIFT algorithm use the FLANN method, while the
AKAZE algorithm uses the Brute-Force Matcher (BF-
Matcher) method. The result of feature matching is done
by forming a polygon using a homography matrix. If the
polygons are formed and the query images with video
frames match, there is a currency object corresponding to
the input query image. The architecture of the currency
recognition system is shown in Figure 1.

A. Data acquisition

Data acquisition is divided into two parts: query
image acquisition and video data acquisition. The query
image uses Indonesian paper currency with a nominal
value of 1000, 2000, 5000, 20000, and 50000 Rupiahs,
as shown in Figure 2. The video data acquisition, in this
case, uses a 2 MP HiLook camera with Full HD
resolution and ten fps. The number of video frames used
for the experiment is 600 video frames. For each
nominal amount, we use three videos with a distance of
10 cm and 30 cm. Meanwhile, the video recording
applied two resolutions, Full HD and HD. Table 1
shows the number of videos used in this research. The
total number of videos is 20 videos.

Copyright ©2021, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 9(4), 2021, 192

Figure 1. The architecture of the currency recognition
system

Start

Video Data
Acquisition

Extracting video
into frame

Feature extraction
SIFT or AKAZE

Feature extraction
SIFT or AKAZE

Query
image

Matching Feature
FLANN or BF-Matcher

end

Video
frame

Keypoint and
Descriptor

Resize
resolution

Keypoint and
Descriptor

Homography matrix

Polygon ?

Match
Not

Match

Yes
No

Table 1. Details of the data in this research

No Recorded
distance (cm)

Resolution Video currency

1 10 Full HD 1000, 2000, 5000,
20000, and 50000

2 10 HD 1000, 2000, 5000,
20000, and 50000

3 30 Full HD 1000, 2000, 5000,
20000, and 50000

4 30 HD 1000, 2000, 5000,
20000, and 50000

Figure 2. Indonesian paper currency for query image input

B. SIFT algorithm

The SIFT algorithm consists of four stages:
searching extreme values on scale-space, detecting
keypoints, determining orientation, and creating
keypoint descriptors [7]. The flowchart of SIFT
algorithm is shown in Figure 3. The first stage is
constructing a scale-space (octave) using Gaussian blur
using (1). L is a blurred image. Then, G is the Gaussian
Blur operator. I is an image where x, y is the location
coordinates. σ is the scale parameter as the amount of blur.
The * is the convolution operation in x and y. It applies
Gaussian blur G onto the image I. The SIFT algorithm on
each detection requires four octaves and five blur scales.

L (x , y , σ)=G (x , y , σ)∗I (x , y) (1)

The second stage is detecting keypoints. Keypoint
determination takes a sample point that is compared
with 26 pixels neighboring. If the point has the smallest
(local minima) or largest (local maxima) value, the point
will become a candidate keypoint. Candidate keypoints
chosen are then filtered to eliminate low-contrast
keypoints and keypoints located near the edge.
Keypoints are also calculated on magnitude and angle.
This stage makes SIFT invariant orientation.

In creating descriptors on the keypoint, the SIFT
algorithm creates 16x16 pixel size around the keypoint
and 4x4 sub-areas with eight orientation directions. The
final result is 128 descriptors.

C. AKAZE algorithm

The AKAZE algorithm consists of 4 parts:
computing the contrast factor, constructing nonlinear
scale-space, detecting features, and creating descriptors
[10]. The flowchart of the AKAZE algorithm is shown
in Figure 4. The first stage is computing the contrast
factor [14]. A Gaussian filter smoothes the query image
or frame video. The next step is calculating the
maximum absolute gradient value (hmax). Index i is
looping on the histogram. Afterward, the gradient value
is divided by a histogram of 300 bins. The formula to
compute the contrast factor k is expressed in (2).

k=
hmax . i
300

 (2)

The second stage is constructing a nonlinear scale-
space [15]. The scale-space approach is as same as the
SIFT algorithm, which discretizes the scale-space in
logarithmic steps arranged in octaves and scales. The
scale-space in the AKAZE algorithm is a pyramid
which is shown in Figure 5. It consists of sub-levels that
each octave is quarter size than the previous octave [16].

The third step is the feature detector. The AKAZE
algorithm uses the determinant of Hessian (DoH) blob-
detector. After constructing the nonlinear scale-space,
DoH query image or video frame is computing at sub-
levels increase. The keypoints or features in the query
image or frame video are extracted by comparing the
DoH image with the neighboring window of size 3x3.

The pixel point is compared with eight neighbors. If it is
greater than eight neighbors, then it becomes a keypoint.

The next step is creating a descriptor [17]. AKAZE
algorithm generates a descriptor on each keypoint that
scales and rotates invariant. Each keypoint is made by
sampling 16×16 pixels around the keypoint and dividing
it into 4×4 blocks. The histogram is then calculated by
eight bins. The final result is 128 descriptors of the
AKAZE algorithm.

D. Matching feature query image with frame video

The SIFT algorithm uses the FLANN method in the
matching feature stage, while the AKAZE algorithm uses

Copyright ©2021, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 9(4), 2021, 193

Start

end

Query image or
Frame Video

Computing the
contrast factor

Constructing non-
linear scale-space

Detecting features
Creating keypoint

descriptors

Descriptor

Figure 4. The flowchart of the AKAZE algorithm

Start

end

Query image or
Frame Video

Searching extreme
values on scale-space

Detecting keypoints

Determination of
orientation

Creating keypoint
descriptors

Descriptor

Figure 3. The flowchart of the SIFT algorithm

Figure 5. Scale-space representation [16]

BF-Matcher. The requirement of matching features is at
least four keypoints having good matches on query image
with frame video. If good matches are more than or equal
to four, a Homography matrix search of the query image
and frame video is performed [18]. The object on an
image will have geometrical transformations such as
translation, rotation, scaling, and shear. The next stage is
checking whether the Homography matrix is formed or
not. The process will be terminated if the Homography
matrix is not formed, which indicates a mismatch.

The Fast Library Approximated Nearest Neighbor
(FLANN) method is used to find the nearest neighbor's
value [19]. The SIFT algorithm produces 128 dimensions
of descriptor for each keypoint. Therefore, matching
features with K-NN is considered inefficient, so the
FLANN method for matching multi-dimensional data is
needed. The FLANN method uses the K-Dimensional Tree
(KD-Tree) to represent multi-dimensional binary tree data
to separate certain areas based on their value position [20].

The AKAZE algorithm generates keypoints and
binary descriptors in the query image and frame video.
The BF-Matcher work compares each query image

descriptor with all frame video descriptors to find the
smallest result [21].

III. RESULTS AND DISCUSSION

A. The experiment of recording resolution

Video resolution needs to be tested to see which
resolution produces the best F1 value. Resolution
experiments use Full HD (1920x1080) and HD
(1280x720) resolutions. In this experiment, the distance
between the currency object and the camera is 20 cm.
Figure 6 and Figure 7 present the resulting graph of the
F1 value on the Full HD and HD videos, respectively.

In Figure 6, the AKAZE algorithm gives better
results than the SIFT algorithm on all currency
experiments. Moreover, on currencies 1000 and 20000,
the AKAZE algorithm gets the maximum value of F1.
In currencies 2000, 5000, and 50000, many false
positive were found, which were negative data but were
recognized as positive by the system. For example,
testing the 50000 currency on the video often matches
the query image of 5000. This false positive recognition

Copyright ©2021, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 9(4), 2021, 194

Figure 6. The performance of the SIFT and AKAZE on the full HD videos

Figure 7. The performance of the SIFT and AKAZE on the HD videos

is because there is the same leading number, which is 5.
In Naharul et al. [22], there was also an error in
detecting the same nominal using the template matching
technique. It is because the numbers 5000 and 50000
only add 0 on the last digit of the nominal.

The recall-precision curves in Figure 6 show that the
SIFT algorithm has a lower precision value than the
AKAZE algorithm. This low precision value indicates that
the level of accuracy between the information requested by
the user and the answer by the system is often wrong. Both
Full HD and HD resolutions produce good recall values. In
various experiments, the recall and precision values are
inversely related in various experiments. If the recall value
is high, the precision is likely low [23].

In the HD resolution experiment, as shown in Figure 7,
the average matching result of the AKAZE algorithm is
better than the SIFT algorithm. The F1 value on the 1000
and 5000 currencies is low because the resolution of the
recording video is very influential. In Adhinata et al. [24],
video resolution also significantly affects the object
detection results and speed. Decreasing the resolution
results in fewer features being detected so that false
negatives, which means positive data are recognized as
negative by the system, often occur. For example, video
data that use the currency of 5000 and is matched against
a query image of 5000, the results do not match.

However, compared to the average resolution of Full HD
and HD, Full HD resolution produces an F1 average
value of 0.81, which is better than HD 0.70 for the
AKAZE algorithm. The average SIFT algorithm tends to
be the same in Full HD and HD resolutions, namely 0.60
and 0.63. Therefore, in the currency distance experiment
with the camera using Full HD resolution.

In Meharu and Worku [11], the use of deep learning
was quite accurate, reaching F1 of 0.918. Meanwhile,
this research uses five currencies, each with a currency
of 1700, so that the total training data is 8500 images.
This training process takes a long time, which is 48
hours. On the other hand, our proposed research does
not go through a training process and uses five different
nominal currencies. The experimental results in this
study are also completely accurate, where the F1 value
is 0.81 on the use of Full HD video data.

B. The optimal distance for object matching

The experiment on the distance of the currency object
with a camera aims to determine the optimal matching
distance. This experiment uses Full HD resolution,
considering that Full HD resolution resulted in an optimal
value of F1. The distance variation in this experiment
uses a distance of 10 cm, and 30 cm. Figure 8 and

Copyright ©2021, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 9(4), 2021, 195

Figure 8. The performance of the SIFT and AKAZE at a distance of 10 cm

Figure 9. The performance of the SIFT and AKAZE at a distance of 30 cm

Figure 9 show the effect of a distance of 10 cm and 30
cm on the matching results.

The AKAZE algorithm optimally results in an
average F1 value of 0.97 at 30 cm. However, in the
SIFT algorithm, the experimental results showed no
significant changes in the 10 cm or 30 cm distance with
an average F1 value of 0.66 and 0.63. At 10 cm, the F1
value is not optimal because the object is too close to
the camera, which causes the feature size to be too large
compared to the features in the query image.

The use of this template matching technique
dramatically affects the distance. Features that are too
large cause the currency object to go undetected. It is
because the template matching technique uses feature
similarity in the query image. Adhinata et al. [25]
analyzed the object's distance with the camera, which
significantly affected accuracy results. Video data that is
too large or small makes it incompatible with the query
image because its features have a low level of similarity.
Therefore, in studies that use distance variations, the
optimal results obtained are at a distance of 30 cm with
an F1 value of 0.97.

C. Discussion

Based on the experiment of resolution and distance,
the AKAZE algorithm produces a better F1 value than
the SIFT algorithm. In terms of processing speed on
each frame, the AKAZE algorithm was found to be
faster than the SIFT algorithm, as shown in Table 2.
This enables the real-time processing of video data. In a
Xu et al. [4], the speed of the SIFT algorithm was 0.59
seconds. However, this speed is also influenced by the
computer hardware used.

The AKAZE algorithm takes 0.25 seconds to process
a single frame at Full HD resolution. It is faster than the
SIFT algorithm. Processing real-time video data can be
done by selecting keyframes, such as processing only a
sequence of frames. The data processing speed is highly
dependent on the resolution of the video data. The use of
full HD data at a distance of 30 cm produces an optimal
F1 value in all currencies, which is more than 0.9, with
an average of 0.97. However, the Full HD resolution
makes processing only four fps in the real-time video data

processing. In contrast, HD resolution video data can
produce nine fps but an F1 value of 0.7. Overall, the
processing speed of AKAZE video frames is faster than
SIFT, both at Full HD and HD resolutions.

The weakness of this research is mainly on the value
of F1 currency objects which have the same nominal
value on the front number. Our future work will modify
the recognition of nominal currency numbers to improve
accuracy in HD resolution. The results of matching the
query image and video data are shown in Figure 10.

IV. CONCLUSION

The AKAZE algorithm for currency recognition
gives the F1 value of 0.97 and a speed of 0.251 at Full
HD resolution better than the SIFT. The processing
speed of AKAZE video frames is also faster than the
SIFT, both at full HD and HD resolutions. Future
research can modify the feature extraction method
section to make it more accurate when using HD
resolution. In this research, experiments at HD
resolution resulted in a processing speed of 0.113, but
the matching results were not quite accurate.

REFERENCES

[1] G. Farooque, A. B. Sargano, I. Shafi, and W. Ali,
“Coin recognition with reduced feature set sift
algorithm using neural network,” in the 14th
International Conference on Frontiers of
Information Technology, Islamabad, Pakistan,
Dec. 2016, pp. 93–98. doi: 10.1109/FIT.2016.025

[2] B. Jiang, X. Li, L. Yin, W. Yue, and S. Wang,
“Object recognition in remote sensing images
using combined deep features,” in the 3rd
Information Technology, Networking, Electronic

Copyright ©2021, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 9(4), 2021, 196

Figure 10. The result of matching query image and video

Table 2. Time processing on matching per frame

Resolution
Speed of processing frame (second)

SIFT AKAZE
Full HD 0.305 0.251

HD 0.154 0.113

https://doi.org/10.1109/FIT.2016.025

and Automation Control Conference, Chengdu,
China, Mar. 2019, pp. 606–610. doi:
10.1109/ITNEC.2019.8729392

[3] Y. Zhang and J. Liang, “A vision based method for
object recognition,” in the 3rd International
Conference on Information Science and Control
Engineering, Beijing, China, Jul. 2016, pp. 139–
142. doi: 10.1109/ICISCE.2016.40

[4] J. Xu, G. Yang, Y. Liu, and J. Zhong, “Coin
recognition method based on SIFT algorithm,” in
the 4th International Conference on Information
Science and Control Engineering, Changsha,
China, Jul. 2017, pp. 229–233. doi:
10.1109/ICISCE.2017.57

[5] A. Kuznetsov and A. Savchenko, “Sport teams
logo detection based on deep local features,” in
International Multi-Conference on Engineering,
Computer and Information Sciences, Novosibirsk,
Russia, Oct. 2019, pp. 548–552. doi:
10.1109/SIBIRCON48586.2019.8958301

[6] N. Dalal and B. Triggs, “Histograms of oriented
gradients for human detection,” Lecture Notes in
Computer Science, vol. 9284, pp. 498-515, 2015.
doi: 10.1007/978-3-319-23528-8_31

[7] D. G. Lowe, “Distinctive image features from
scale-invariant keypoints,” International Journal
of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004. doi: 10.1023/B:VISI.0000029664.99615.94

[8] H. Bay, A. Ess, T. Tuytelaars, and L. Vangool,
“Speeded-Up Robust Features (SURF),” Computer
Vision and Image Understanding, vol. 110, no. 3,
pp. 346–359, 2006. doi: 10.1016/j.cviu.2007.09.014

[9] E. Rublee, V. Rabaud, K. Konolige, and G.
Bradski, “ORB: An efficient alternative to SIFT or
SURF,” in the IEEE International Conference on
Computer Vision, Barcelona, Spain, Nov. 2011,
pp. 2564–2571. doi: 10.1109/ICCV.2011.6126544

[10] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast
explicit diffusion for accelerated features in
nonlinear scale spaces,” in the British Machine
Vision Conference, Bristol, UK, Sep. 2013, pp. 1-9.
doi: 10.5244/C.27.13

[11] M. L. Meharu and H. S. Worku, “Real-Time
Ethiopian currency recognition for visually
disabled peoples using convolutional neural
network,” Research Square, preprint, pp. 1-24,
2020. doi: 10.21203/rs.3.rs-125061/v1

[12] Q. Zhang, W. Q. Yan, and M. Kankanhalli,
“Overview of currency recognition using deep
learning,” Journal of Banking and Financial
Technology, vol. 3, no. 1, pp. 59–69, 2019. doi:
10.1007/s42786-018-00007-1

[13] D. Henry, Y. Yao, R. Fulton, and A. Kyme, “An
optimized feature detector for markerless motion
tracking in motion-compensated neuroimaging,”
in the IEEE Nuclear Science Symposium and
Medical Imaging Conference, Atlanta, USA, Oct.
2017, pp. 1–4. doi:
10.1109/NSSMIC.2017.8532865

[14] P. Soleimani, D. W. Capson, and K. F. Li, “Real-
time FPGA-based implementation of the AKAZE
algorithm with nonlinear scale space generation
using image partitioning,” Journal of Real-Time
Image Processing, vol. 18, pp. 2123-2134, 2021.
doi: 10.1007/s11554-021-01089-9

[15] H. Seong, H. Choi, H. Son, and C. Kim, “Image-
based 3D building reconstruction using A-KAZE
feature extraction algorithm,” in the International
Symposium on Automation and Robotics in
Construction, Berlin, Germany, Jul. 2018. doi:
10.22260/isarc2018/0127

[16] L. Kalms, K. Mohamed, and D. Göhringer,
“Accelerated embedded AKAZE feature detection
algorithm on FPGA,” in ACM International
Conference Proceeding Series, Bochum,
Germany, Jun. 2017, pp. 3–8. doi:
10.1145/3120895.3120898

[17] B. Soni, V. Anji Reddy, N. B. Muppalaneni, and C.
Lalrempuii, “Image forgery detection using
AKAZE keypoint feature extraction and trie
matching,” International Journal of Innovative
Technology and Exploring Engineering, vol. 9, no.
1, pp. 2208–2213, 2019. doi:
10.35940/ijitee.A4784.119119

[18] D. K. Iakovidis, E. Spyrou, and D. Diamantis,
“Efficient homography-based video visualization
for wireless capsule endoscopy,” in the IEEE
International Conference on BioInformatics and
BioEngineering, Chania, Greece , Nov. 2013, pp.
1–4. doi: 10.1109/BIBE.2013.6701598

[19] M. Muja and D. Lowe, “FLANN - Fast Library for
Approximate Nearest Neighbors: User manual,”
Univ. of British Columbia, Canada, pp. 1–21, 2009.

[20] J. Jo, J. Seo, and J. D. Fekete, “PANENE: A
Progressive Algorithm for Indexing and Querying
Approximate k-Nearest Neighbors,” IEEE
Transactions on Visualization and Computer
Graphics, vol. 26, no. 2, pp. 1347–1360, 2020.
doi: 10.1109/TVCG.2018.2869149

[21] I. W. A. Suryawibawa, I. K. G. D. Putra, and N. K.
A. Wirdiani, “Herbs recognition based on Android
using OpenCV,” International Journal of Image,
Graphics and Signal Processing, vol. 7, no. 2, pp.
1–7, 2015. doi: 10.5815/ijigsp.2015.02.01

[22] M. Naharul, H. Najihul, and S. Adinugroho,
“Implementasi metode template matching untuk
mengenali nilai angka pada citra uang kertas yang
dipindai,” Jurnal Pengembangan Teknologi
Informasi dan Ilmu Komputer, vol. 3, no. 2, pp.
1550–1556, 2019.

[23] N. P. Lestari, “Uji recall and precision sistem temu
kembali informasi OPAC Perpustakaan ITS
Surabaya,” B.Eng thesis, Universitas Airlangga,
Surabaya, Indonesia, 2016.

[24] F. D. Adhinata, M. Ikhsan, and W. Wahyono, “People
counter on CCTV video using histogram of oriented
gradient and Kalman filter methods,” Jurnal
Teknologi dan Sistem Komputer, vol. 8, no. 3, pp.
222–227, 2020. doi: 10.14710/jtsiskom.2020.13660

Copyright ©2021, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 9(4), 2021, 197

https://doi.org/10.14710/jtsiskom.2020.13660
https://doi.org/10.5815/ijigsp.2015.02.01
https://doi.org/10.1109/TVCG.2018.2869149
https://doi.org/10.1109/BIBE.2013.6701598
https://doi.org/10.35940/ijitee.A4784.119119
https://doi.org/10.1145/3120895.3120898
https://doi.org/10.1145/3120895.3120898
https://doi.org/10.22260/ISARC2018/0127
https://doi.org/10.1007/s11554-021-01089-9
https://doi.org/10.1109/NSSMIC.2017.8532865
https://doi.org/10.1007/s42786-018-00007-1
https://doi.org/10.21203/rs.3.rs-125061/v1
https://doi.org/10.5244/C.27.13
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1007/978-3-319-23528-8_31
https://doi.org/10.1109/SIBIRCON48586.2019.8958301
https://doi.org/10.1109/ICISCE.2017.57
https://doi.org/10.1109/ICISCE.2016.40
https://doi.org/10.1109/ITNEC.2019.8729392

[25] F. D. Adhinata, A. Harjoko, and Wahyono, “Object
searching on video using orb descriptor and
support vector machine,” in Advances in

Computational Collective Intelligence, Da Nang,
Vietnam, Nov. 2020, pp. 239–251. doi:
10.1007/978-3-030-63119-2_20

©2021. This open-access article is distributed under the terms and conditions of the Creative
Commons Attribution-ShareAlike 4.0 International License.

Copyright ©2021, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 9(4), 2021, 198

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1007/978-3-030-63119-2_20

	I. Introduction
	II. RESEARCH METHODS
	A. Data acquisition
	B. SIFT algorithm
	C. AKAZE algorithm
	D. Matching feature query image with frame video

	III. Results and discussion
	A. The experiment of recording resolution
	B. The optimal distance for object matching
	C. Discussion

	IV. Conclusion
	References

