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Abstract – Currency recognition is one of the essential
things  since  everyone  in  any  country  must  know
money. Therefore, computer vision has been developed
to recognize currency. One of the currency recognition
uses the SIFT algorithm. The recognition results are
very accurate, but the processing takes a considerable
amount of time, making it impossible to run for real-
time data such as video. AKAZE algorithm has been
developed for real-time data processing because of its
fast  computation  time  to  process  video  data  frames.
This  study  proposes  the  faster real-time  currency
recognition  system  on  video  using  the  AKAZE
algorithm. The purpose of this study is to compare the
SIFT and AKAZE algorithms related  to  a  real-time
video data processing to determine the value of F1 and
its  speed.  Based  on  the  experimental  results,  the
AKAZE algorithm is resulting  F1 value of 0.97, and
the  processing  speed  on  each  video  frame  is  0.251
seconds. Then at the same video resolution, the SIFT
algorithm results in an F1 value of 0.65 and a speed of
0.305  seconds  to  process  one  frame.  These  results
show that  the  AKAZE algorithm is  faster  and more
accurate in processing video data.
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I. INTRODUCTION

Object  recognition  is  the  process  of  identifying
objects  based  on the  characteristics  of  an  object  in  a
digital image or video. The characteristics of an object
are often called features of the object. There is a feature
extraction stage in image or video data processing. The
human  eye  can  easily  recognize  an  object,  but  the
computer requires  several  features to process,  such as
the  color,  size,  and  shape  of  an  object  [1].  Object
recognition using computers has developed in everyday
life, including the recognition of aircraft and ships  [2],
recognition of butterflies, ants, cameras, and faces  [3],
and also currency  recognition  [4].  One of  the objects
that the researcher developed is currency objects.  The
recognition  of  currency  objects  is  beneficial  because
everyone knows money. Even those who are illiterate
can recognize the type of money.

Some  of  the  techniques  developed  in  currency
recognition  are  template  matching  [4] and  machine
learning  [1].  In  the  template  matching  technique,  the
stage that most influences the object recognition result
is  feature  extraction.  The feature  extraction  algorithm
greatly  determines  the  accuracy  and  speed  of  object
matching, especially in the video data processing. Video
data  processing  is  done  by  extracting  the  video  into
frames.  Object  recognition  is  done  by  extracting  the
features contained in the object. Two types of features
are  extracted  from the  frame  or  image,  namely  local
feature  [5] and global  feature  [6].  Global features  are
usually used to detect objects and classify them. Instead,
local  features  are  used  for  object  recognition  or
identification.

Some of the local feature extraction algorithms are
SIFT  [7],  SURF  [8],  ORB  [9],  and  AKAZE  [10].
Research by Jing Xu et al. [4] introduced currency coin
recognition  using  the  SIFT  algorithm.  The  research
results are  very accurate,  but  the matching takes  0.59
seconds. This speed makes the system unable to run in
real-time processing. Furthermore, researchers have also
solved the currency recognition problem by using deep
learning techniques [11], [12]. The use of deep learning
requires  the  data  to  be  trained  in  advance  for  a  long
time. Therefore, another technique that does not involve
training in currency recognition is needed. 

Several studies used the AKAZE template matching
algorithm  in  different  case  studies.  Research  by
Kuznetsov  and  Savchenko  [5] used  the  AKAZE
algorithm  to  detect  logos  of  sports  teams.  Using  the
AKAZE algorithm for a matching logo results in a more
optimal F1 value than other feature extraction algorithms.
AKAZE algorithm only spends 0.15 seconds to process
each  video  frame  [13].  Using  AKAZE  in  previous
research resulted in the optimal value of F1 and speed. 

This  study  proposes the  use  of  the  AKAZE
algorithm  for  real-time  currency  recognition.  This
research will use a template matching approach with a
suitable method for real-time processes with no training
process  as  in  the  stages  of  deep  learning.  For
comparison, we also use the SIFT algorithm to compare
the F1 value and speed to the AKAZE algorithm. In the
end, we will discuss the suitable algorithm for the case
of real-time currency recognition on video.

This paper is organized into four sections. The first
section is an introduction, while section 2 describes the
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methods used in this study. Next, section 3 discusses the
results and evaluation of this system. The last section
contains conclusions and suggestions for further work.

II. RESEARCH METHODS

The  currency  recognition  system  starts  with
acquiring video data and the query image. Video data is
extracted into frames for the next stage of processing.
The large query image is resized to be matched with the
currency object contained in the video. Then, both query
image  and  video  frames  are  carried  out  by  feature
extraction  using  the  SIFT  or  AKAZE algorithm.  The
results  of  feature  extraction  are  keypoints  and
descriptors of features. 

Keypoints  are  unique  coordinate  points  as  object
features,  while  descriptors  are  numbers  that  define
keypoints. The next stage is matching the descriptor in the
query image and the video frame. The matching features of
the SIFT algorithm use  the FLANN method,  while  the
AKAZE  algorithm  uses  the  Brute-Force  Matcher  (BF-
Matcher) method. The result of feature matching is done
by forming a polygon using a homography matrix. If the
polygons  are  formed and the  query  images  with  video
frames match, there is a currency object corresponding to
the input query image. The  architecture of the  currency
recognition system is shown in Figure 1.

A. Data acquisition

Data  acquisition  is  divided  into  two  parts:  query
image acquisition and video data acquisition. The query
image uses Indonesian paper currency with a nominal
value of 1000, 2000, 5000, 20000, and 50000 Rupiahs,
as shown in Figure 2. The video data acquisition, in this
case,  uses  a  2  MP  HiLook  camera  with  Full  HD
resolution and ten fps. The number of video frames used
for  the  experiment  is  600  video  frames.  For  each
nominal amount, we use three videos with a distance of
10  cm  and  30  cm.  Meanwhile,  the  video  recording
applied  two  resolutions,  Full  HD  and  HD.  Table  1
shows the number of videos used in this research. The
total number of videos is 20 videos.

Copyright ©2021, The authors. JTSiskom ISSN: 2338-0403 Jurnal Teknologi dan Sistem Komputer, 9(4), 2021, 192

Figure 1. The architecture of the currency recognition
system
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Table 1. Details of the data in this research

No Recorded
distance (cm)

Resolution Video currency

1 10 Full HD 1000, 2000, 5000,
20000, and 50000

2 10 HD 1000, 2000, 5000,
20000, and 50000

3 30 Full HD 1000, 2000, 5000,
20000, and 50000

4 30 HD 1000, 2000, 5000,
20000, and 50000

  

  

Figure 2. Indonesian paper currency for query image input 



B. SIFT algorithm

The  SIFT  algorithm  consists  of  four  stages:
searching  extreme  values  on  scale-space,  detecting
keypoints,  determining  orientation,  and  creating
keypoint  descriptors  [7].  The  flowchart  of  SIFT
algorithm  is  shown  in  Figure  3.  The  first  stage  is
constructing a scale-space (octave) using Gaussian blur
using (1).  L is a blurred image. Then,  G is the Gaussian
Blur operator.  I is  an image where  x,  y is  the location
coordinates. σ is the scale parameter as the amount of blur.
The * is the convolution operation in  x and  y. It applies
Gaussian blur G onto the image I. The SIFT algorithm on
each detection requires four octaves and five blur scales. 

L ( x , y , σ )=G ( x , y , σ )∗I (x , y )            (1)

The second stage is detecting keypoints.  Keypoint
determination  takes  a  sample  point  that  is  compared
with 26 pixels neighboring. If the point has the smallest
(local minima) or largest (local maxima) value, the point
will become a candidate keypoint. Candidate keypoints
chosen  are  then  filtered  to  eliminate  low-contrast
keypoints  and  keypoints  located  near  the  edge.
Keypoints are also calculated on magnitude and angle.
This stage makes SIFT invariant orientation.

In  creating  descriptors  on  the  keypoint,  the  SIFT
algorithm creates 16x16 pixel size around the keypoint
and 4x4 sub-areas with eight orientation directions. The
final result is 128 descriptors.

C. AKAZE algorithm

The  AKAZE  algorithm  consists  of  4  parts:
computing  the  contrast  factor,  constructing  nonlinear
scale-space, detecting features, and creating descriptors
[10]. The flowchart of the AKAZE algorithm is shown
in  Figure 4.  The first  stage is computing the contrast
factor [14]. A Gaussian filter smoothes the query image
or  frame  video.  The  next  step  is  calculating  the
maximum  absolute  gradient  value  (hmax).  Index  i is
looping on the histogram. Afterward, the gradient value
is divided by a histogram of 300 bins.  The formula  to
compute the contrast factor k is expressed in (2).

k=
hmax . i
300

                                (2)

The second stage is constructing a nonlinear scale-
space  [15]. The scale-space approach is as same as the
SIFT  algorithm,  which  discretizes  the  scale-space  in
logarithmic  steps  arranged  in octaves  and  scales.  The
scale-space  in  the  AKAZE  algorithm  is  a  pyramid
which is shown in Figure 5. It consists of sub-levels that
each octave is quarter size than the previous octave [16].

The third step is the feature detector. The AKAZE
algorithm uses the determinant of Hessian (DoH) blob-
detector.  After  constructing  the  nonlinear  scale-space,
DoH query image or video frame is computing at sub-
levels increase. The keypoints or features in the query
image or frame video are extracted by comparing the
DoH image with the neighboring window of size 3x3.

The pixel point is compared with eight neighbors. If it is
greater than eight neighbors, then it becomes a keypoint.

The next step is creating a descriptor  [17]. AKAZE
algorithm generates  a  descriptor  on each keypoint  that
scales and rotates invariant.  Each keypoint is made by
sampling 16×16 pixels around the keypoint and dividing
it into 4×4 blocks. The histogram is then calculated by
eight  bins.  The  final  result  is  128  descriptors  of  the
AKAZE algorithm.

D. Matching feature query image with frame video

The SIFT algorithm uses the FLANN method in the
matching feature stage, while the AKAZE algorithm uses
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Figure 4. The flowchart of the AKAZE algorithm
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Figure 5. Scale-space representation [16]



BF-Matcher. The requirement of matching features is at
least four keypoints having good matches on query image
with frame video. If good matches are more than or equal
to four, a Homography matrix search of the query image
and  frame  video  is  performed  [18].  The  object  on  an
image  will  have  geometrical  transformations  such  as
translation, rotation, scaling, and shear. The next stage is
checking whether the Homography matrix is formed or
not. The process will be terminated if the Homography
matrix is not formed, which indicates a mismatch.

The  Fast  Library  Approximated  Nearest  Neighbor
(FLANN) method is used to find the nearest  neighbor's
value [19]. The SIFT algorithm produces 128 dimensions
of  descriptor  for  each  keypoint.  Therefore,  matching
features  with  K-NN  is  considered  inefficient,  so  the
FLANN method for matching multi-dimensional data is
needed. The FLANN method uses the K-Dimensional Tree
(KD-Tree) to represent multi-dimensional binary tree data
to separate certain areas based on their value position [20].

The  AKAZE  algorithm  generates  keypoints  and
binary descriptors in the query image and frame video.
The  BF-Matcher  work  compares  each  query  image

descriptor with all  frame video descriptors to find the
smallest result [21].

III. RESULTS AND DISCUSSION

A. The experiment of recording resolution

Video  resolution  needs  to  be  tested  to  see  which
resolution  produces  the  best  F1 value.  Resolution
experiments  use  Full  HD  (1920x1080)  and  HD
(1280x720) resolutions. In this experiment, the distance
between the currency object and the camera is 20 cm.
Figure 6 and Figure 7 present the resulting graph of the
F1 value on the Full HD and HD videos, respectively.

In  Figure  6,  the  AKAZE  algorithm  gives  better
results  than  the  SIFT  algorithm  on  all  currency
experiments. Moreover, on currencies 1000 and 20000,
the AKAZE algorithm gets the maximum value of  F1.
In  currencies  2000,  5000,  and  50000,  many  false
positive were found, which were negative data but were
recognized  as  positive  by  the  system.  For  example,
testing the 50000 currency on the video often matches
the query image of 5000. This false positive recognition
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Figure 6. The performance of the SIFT and AKAZE on the full HD videos

Figure 7. The performance of the SIFT and AKAZE on the HD videos



is because there is the same leading number, which is 5.
In  Naharul  et  al.  [22],  there  was  also  an  error  in
detecting the same nominal using the template matching
technique.  It  is  because the numbers  5000 and 50000
only add 0 on the last digit of the nominal.

The recall-precision curves in  Figure 6 show that the
SIFT  algorithm  has  a  lower  precision  value  than  the
AKAZE algorithm. This low precision value indicates that
the level of accuracy between the information requested by
the user and the answer by the system is often wrong. Both
Full HD and HD resolutions produce good recall values. In
various experiments,  the recall  and precision values  are
inversely related in various experiments. If the recall value
is high, the precision is likely low [23].

In the HD resolution experiment, as shown in Figure 7,
the average matching result of the AKAZE algorithm is
better than the SIFT algorithm. The F1 value on the 1000
and 5000 currencies is low because the resolution of the
recording video is very influential. In Adhinata et al. [24],
video  resolution  also  significantly  affects  the  object
detection  results  and  speed. Decreasing  the  resolution
results  in  fewer  features  being  detected  so  that  false
negatives, which means positive data are recognized as
negative by the system, often occur. For example, video
data that use the currency of 5000 and is matched against
a  query  image  of  5000,  the  results  do  not  match.

However, compared to the average resolution of Full HD
and  HD,  Full  HD  resolution  produces  an  F1 average
value  of  0.81,  which  is  better  than  HD  0.70  for  the
AKAZE algorithm. The average SIFT algorithm tends to
be the same in Full HD and HD resolutions, namely 0.60
and 0.63. Therefore, in the currency distance experiment
with the camera using Full HD resolution.

In Meharu and Worku [11], the use of deep learning
was quite accurate,  reaching  F1 of 0.918. Meanwhile,
this research uses five currencies, each with a currency
of 1700, so that the total training data is 8500 images.
This  training  process  takes  a  long  time,  which  is  48
hours.  On the other hand, our proposed research does
not go through a training process and uses five different
nominal  currencies.  The  experimental  results  in  this
study are also completely accurate, where the F1 value
is 0.81 on the use of Full HD video data.

B. The optimal distance for object matching

The experiment on the distance of the currency object
with a camera aims to determine the optimal matching
distance.  This  experiment  uses  Full  HD  resolution,
considering that Full HD resolution resulted in an optimal
value of  F1.  The distance variation in this experiment
uses  a  distance  of  10  cm,  and  30  cm.  Figure  8 and
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Figure 8. The performance of the SIFT and AKAZE at a distance of 10 cm

Figure 9. The performance of the SIFT and AKAZE at a distance of 30 cm



Figure 9 show the effect of a distance of 10 cm and 30
cm on the matching results.

The  AKAZE  algorithm  optimally  results  in  an
average  F1 value  of  0.97 at  30 cm.  However,  in  the
SIFT  algorithm,  the  experimental  results  showed  no
significant changes in the 10 cm or 30 cm distance with
an average F1 value of 0.66 and 0.63. At 10 cm, the F1
value is not optimal because the object is too close to
the camera, which causes the feature size to be too large
compared to the features in the query image.

The  use  of  this  template  matching  technique
dramatically affects the distance. Features that are too
large cause the currency object to go undetected. It  is
because  the template  matching technique  uses  feature
similarity  in  the  query  image.  Adhinata  et  al. [25]
analyzed the object's  distance with the camera,  which
significantly affected accuracy results. Video data that is
too large or small makes it incompatible with the query
image because its features have a low level of similarity.
Therefore,  in  studies  that  use  distance  variations,  the
optimal results obtained are at a distance of 30 cm with
an F1 value of 0.97.

C. Discussion

Based on the experiment of resolution and distance,
the AKAZE algorithm produces a better  F1 value than
the  SIFT algorithm.  In  terms  of  processing  speed  on
each  frame,  the  AKAZE  algorithm  was  found  to  be
faster  than the SIFT algorithm, as  shown in  Table  2.
This enables the real-time processing of video data. In a
Xu et al. [4], the speed of the SIFT algorithm was 0.59
seconds.  However, this speed is also influenced by the
computer hardware used.

The AKAZE algorithm takes 0.25 seconds to process
a single frame at Full HD resolution. It is faster than the
SIFT algorithm. Processing real-time video data can be
done by selecting keyframes, such as processing only a
sequence of frames. The data processing speed is highly
dependent on the resolution of the video data. The use of
full HD data at a distance of 30 cm produces an optimal
F1 value in all currencies, which is more than 0.9, with
an  average  of  0.97.  However,  the  Full  HD resolution
makes processing only four fps in the real-time video data

processing.  In  contrast,  HD  resolution  video  data  can
produce  nine fps  but  an  F1 value of  0.7.  Overall,  the
processing speed of AKAZE video frames is faster  than
SIFT, both at Full HD and HD resolutions.

The weakness of this research is mainly on the value
of  F1 currency  objects  which have the same nominal
value on the front number. Our future work will modify
the recognition of nominal currency numbers to improve
accuracy in HD resolution. The results of matching the
query image and video data are shown in Figure 10.

IV. CONCLUSION

The  AKAZE  algorithm  for  currency  recognition
gives the F1 value of 0.97 and a speed of 0.251 at Full
HD  resolution  better  than  the  SIFT.  The  processing
speed of AKAZE video frames is also faster  than the
SIFT,  both  at  full  HD  and  HD  resolutions.  Future
research  can  modify  the  feature  extraction  method
section  to  make  it  more  accurate  when  using  HD
resolution.  In  this  research,  experiments  at  HD
resolution resulted in a processing speed of 0.113, but
the matching results were not quite accurate.
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